

INSTRUMENTS

PVCHECK

HT Instruments GmbH

Am Waldfriedhof 1b 41352 Korschenbroich Tel: 02161-564 581 Fax: 02161-564 583

info@HT-Instruments.de www.HT-Instruments.de

ın	naitsv	erzeichnis:	
1.		HERHEITSVORKEHRUNGEN UND VERFAHREN	3
	1.1.	Vorwort	3
	1.2.	Während der Anwendung	4
	1.3.	Nach Gebrauch	4
		Messkategorien-Definition (Überspannungskategorien)	
		GEMEINE BESCHREIBUNG	
		EINFÜHRUNG	
	2.2.	Messgeräteigenschaften	5
		RBEREITUNG FÜR DIE VERWENDUNG	
		Vorbereitende Prüfung	
		Versorgung des Gerätes	
		Kalibration	
		Lagerung	
		MENKLATUR	
		Gerätebeschreibung	
		Bedientastenbeschreibung	
		Display-Beschreibung	
		Begrüßungsbildschirm	
		JTPMENÜ	
	5.1. 5.1.1	SET – Konfigurations-Einstellungen	
	5.1.1		
	5.1.3		
	5.1.4		
	5.1.5	. Einstrahlung	
	5.1.6		
		EFF – Einstellungen für den Leistungstest von PV-Anlagen	
	5.2.1		
	5.2.2 5.2.3	5 1	
		LOW Ω – Einstellungen Für den Durchgangstest	
	5.3.1		
		$M\Omega$ – Einstellungen für die Isolationsmessung	
	5.4.1.		1 <i>7</i> 17
		IVCK – Einstellungen für den IVCHECK Schnelltest	
	5.5.1	•• • • • • • • • • • • • • • • • • • • •	
	5.6.	DB - Moduldatenbank	20
	5.6.1		
	5.6.2		
^	5.6.3		
6.		SSUNG DURCHFÜHREN	
		Wirkungsgradmessung mit externem Datenlogger SOLAR-02	
		Messung der PV AnlagenParameter ohne Datenlogger SOLAR-02	
	6.3. 6.3.1	Schnelltest an Pv-Modulen und Strings (IVCK)	
	6.3.2		
	6.3.3	· · · · · · · · · · · · · · · · · · ·	
	6.3.4		
		3.4.1. Anomalien beim Test IVCK	
		IsolationswiderstandsMESSUNG an PV-Modulen & Strings	
	6.4.1		43
	6.4.2		
	6.4.3 6.4.4	3	
		14.1. Anomalien	
		Durchgangstest an PV-Modulen/Strings/Feldern (LOW Ω)	
		Finführung	

	6.5.2.		
	6.5.3.		
		.3.1. Anomalien	
7.	- ABS	PEICHERUNG DER ERGEBNISSE	<u>55</u>
	7.1.	Abspeicherung der Wirkungsgrads-Messergebnisse	55
		Abspeicherung der Messungen von IVCK, M Ω und LOW Ω	
		MESSERGEBNISE ANZEIGEN	57
	7.3.1.		
	7.3.2.	2.001.007.00.00.00.00.00.00.00.00.00.00.00.00	
		2.2.1. Zugriff zu den abgespeicherten Daten – Numerische Anzeige	
_	7.3.3.		
8.		BINDUNG DES GERÄTES MIT DEM PC	
9.		RTUNG UND PFLEGE	
		Allgemeine Informationen	
		Batteriewechsel	
		Reinigung	
		LEBENSENDE	
10). TEC	HNISCHE DATEN	63
	10.1.	Technische Daten der Leistung einer PV-Installation	63
	10.2.	Technische Daten der Funktion IVCK	64
	10.3.	Technische Daten der elektrischen Sicherheit	64
	10.4.	Sicherheitsvorschriften	65
	10.4.	1. Allgemein	65
	10.5.	Allgemeine Eigenschaften	65
	10.6.	Klimabedingungen für den Gebrauch	65
	10.7.	Zubehör	66
	10.8.	Optionales Zubehör	66
11	. ANH	IANG – THEORETISCHE INFORMATIONEN	67
		Wirkungsgradstest der PV-Anlagen	
12		VICE	
		Garantiebedingungen	
		Service	

1. SICHERHEITSVORKEHRUNGEN UND VERFAHREN

Dieses Gerät entspricht der Sicherheitsnorm IEC/EN61010-1 für elektronische Messgeräte. Achten Sie bei Messungen auf folgende Anweisungen und lesen Sie mit äußerster Sorgfalt alle Notizen, denen folgendes Symbol △ voran gestellt ist.

- Messen Sie keine Spannungen oder Ströme in feuchter oder nasser Umgebung.
- Benutzen Sie das Messgerät nicht in Umgebungen mit explosivem oder brennbarem Gas oder Material, Dampf oder Staub
- Berühren Sie den zu messenden Stromkreis nicht, wenn Sie keine Messung durchführen
- Berühren Sie keine offen liegenden leitfähigen Metallteile wie ungenutzte Messleitungen, usw.
- Benutzen Sie das Messgerät nicht, wenn es sich in einem schlechten Zustand befindet, z.B. wenn Sie eine Deformierung, Bruch, keine Anzeige, usw. feststellen.
- Seien Sie vorsichtig bei Messungen von über 25V in ordentlichen Umgebungen und 50V in außerordentlichen Umgebungen, da ein Risiko eines elektrischen Schocks besteht.

Die folgenden Symbole werden in dieser Bedienungsanleitung und auf dem Gerät benutzt:

Vorsicht: Beziehen Sie sich auf die Bedienungsanleitung. Falscher Gebrauch kann zur Beschädigung des Messgerätes oder seiner Bestandteile führen.

Gefahr Hochspannung: Risiko eines elektrischen Schlages.

Doppelte Isolation

Gleichspannung oder -strom

Erdung

1.1. VORWORT

- Dieses Gerät ist für die Verwendung unter den im § 10.6 angegebenen Umgebungsbedingungen vorgesehen. Verwenden Sie das Gerät nicht unter davon abweichenden Umgebungsbedingungen.
- Das Gerät kann zur Messung von SPANNUNG und STROM in Installationen mit CAT I 1000V DC mit maximaler Spannung 1000V DC zwischen den Eingängen benutzt werden. Messen Sie keine Stromkreise, die die in den § 10, § 10.2 und § 10.3 spezifizierten Grenzen überschreiten.
- Halten Sie die üblichen Sicherheitsbestimmungen ein, die zum Schutz des Bedieners vor gefährlichen Strömen und des Gerätes vor falscher Bedienung vorgesehen sind.
- Nur das mitgelieferte Zubehör garantiert Übereinstimmung mit dem Sicherheitsstandard. Sie müssen in einem guten Zustand sein und, falls nötig, durch dasselbe Modell ersetzt werden.
- Prüfen Sie, ob die Batterien korrekt installiert sind.
- Bevor Sie die Messleitungen mit dem zu messenden Stromkreis verbinden, sollten Sie überprüfen, ob die gewünschte Funktion ausgewählt worden ist.

1.2. WÄHREND DER ANWENDUNG

Lesen Sie die folgenden Empfehlungen und Anweisungen sorgfältig:

WARNUNG

- Das Nichtbefolgen der Verwarnungen und/oder der Gebrauchsanweisungen kann das Gerät und/oder seine Bestandteile beschädigen und eine Gefahr für den Benutzer darstellen.
- Das Symbol " zeigt den Batterieladezustand an. Wenn der Batterieladezustand aufs Minimum sinkt erscheint das Symbol " auf dem Display. In diesem Fall unterbrechen Sie die Prüfungen und ersetzen Sie die Batterien, wie im § 9.2 beschrieben.
- Das Gerät ist in der Lage, die gespeicherten Daten auch ohne Batterien zu halten.

1.3. NACH GEBRAUCH

Wenn die Messungen abgeschlossen sind, drücken und halten Sie die ON/OFF Taste einige Sekunden lang, um das Gerät auszuschalten. Wenn das Gerät für eine lange Zeit nicht benutzt wird, entfernen Sie die Batterie und befolgen Sie die Anweisungen im § 3.4.

1.4. MESSKATEGORIEN-DEFINITION (ÜBERSPANNUNGSKATEGORIEN)

Die Norm "IEC/EN61010-1: Sicherheitsstandards für elektrische Mess- und Steuerungsgeräte und Geräte zur Laboranwendung, Artikel 1: Allgemeine Erfordernisse", definiert die Bedeutung von Messkategorie, gewöhnlich auch Überspannungskategorie genannt. In § 6.7.4: Zu messende Stromkreise, lautet sie:

Schaltkreise sind in die folgenden Messkategorien verteilt:

- Messkategorie IV ist für Messgeräte, die an der Einspeisung der Niederspannungsanlagen messen können.
 Beispiele sind Stromzähler und Messungen an Hauptüberstromschutzvorrichtungen und kleinen Transformatoreneinheiten.
- Messkategorie III ist für Messgeräte, die in Gebäudeinstallationen messen können. Beispiele sind Messungen an Installationsverteilern, Sicherungsautomaten, Installationsleitungen, Netzwerksteckdosen, Verteilerkästen, Schalter, Deckenauslässe in der festen Installation. Weiterhin Geräte, die in der Industrie zur Anwendung kommen, die unter anderem dauerhaft fest angeschlossen sind, wie zum Beispiel ein Motor.
- Messkategorie II ist für Messgeräte, die Messungen an Geräten ausführen die ein Netzanschlusskabel haben.
 - Beispiele sind Messungen an Haushaltsgeräten, tragbaren Werkzeugen und ähnlichen Geräten.
- Messkategorie I ist für Messgeräte, die Messungen an Stromkreisen ausführen, die nicht direkt mit dem NETZ verbunden sind.

.

2. ALLGEMEINE BESCHREIBUNG

2.1. EINFÜHRUNG

Das PV-CHECK ermöglicht die sichere, normgerechte elektrische Überprüfung der PV Anlage gemäß **VDE 0126-23** (EN 62446) und die Funktionskontrolle der PV Module/Strings bis 1000V AC/DC. Darüber hinaus dient das Gerät auch zur DC seitigen Bewertung des Wirkungsgrads einer PV-Anlage.

Die IVCK-Messung (Leerlaufspannung & Kurzschlussstrom), die Isolationsmessungen und die Durchgangsprüfung können sowohl im automatischen Prüfablauf der Auto Sequenz Reihenfolge IVCK → Isolation → Durchgang als auch manuell einzeln durchgeführt werden.

2.2. MESSGERÄTEIGENSCHAFTEN

Das Messgerät eignet sich für:

Durchgangstest des Schutzleiter (LOW Ω)

- Test mit Prüfstrom > 200mA gemäß den Richtlinien IEC/EN62446 (VDE0126-23)
- Manuelle Kalibration der Messleitungen

Messung des Isolationswiderstandes an PV-Modulen/Strings (M Ω)

- Prüfspannungen 250V, 500V, 1000VDC gemäß IEC/EN62446 (VDE0126-23)
- 3 Messarten: Feld, Timer, String
- 2 Prüfverfahren auswählbar

<u>Prüfverfahren 1:</u> Getrennte Messung an den positiven und negative Elektroden des PV-Generators einzeln gegen Erde

<u>Prüfverfahren 2:</u> Positive und negative Elektroden des PV-Generators sind kurzgeschlossen und Messung gegen Erde

Ermittlung des DC Wirkungsgrads einer PV-Installation (EFF)

- Messung von Gleichspannung und Strom sowie DC-Leistung von PV-Modulen/Strings
- Einstrahlungsmessung [W/m²] durch mit optionalem Datenlogger SOLAR-02 verbundener optionaler Referenzzelle HT304N
- Temperaturmessung an PV-Modulen und der Umgebungstemperatur durch mit optionalem Datenlogger SOLAR-02 angeschlossenen Temperaturfühler PT300N
- Sofortige Bewertung des DC-Wirkungsgrads gemäß den vom Benutzer eingegebenen Anlagenparameter
- Aufzeichnung der Parameter einer PV-Anlage mit wählbaren Messintervallen (Integrationsdauer) von 5s bis 60 Minuten

Schnelle Vorprüfungs-Messungen (IVCK) gemäß der IEC/EN62446 (VDE0126-23)

- Messung der Leerlaufspannung Voc an PV-Modulen/Strings bis 1000VDC
- Messung des Kurzschlussstroms Isc an PV-Modulen/Strings bis 10A
- Einstrahlungsmessung mit optionaler Referenzzelle
- Sofortige Bewertung (OK/NEIN) der Messergebnisse
- Interne programmierbare Datenbank für die Kenndaten von bis zu 30 PV-Modulen
- Messdatenansicht unter Betriebs- (OPC) und Standardtestbedingungen (STC).

Dieses Modell hat ein hintergrund-beleuchtetes Display, interne Kontrasteinstellung und eine **HILFE**-Taste, um dem Anwender eine schnelle und einfache Hilfe während des Einsatzes des Messgerätes mit den Anlagen zu geben. Eine Funktion zur automatischen Ausschaltung, die auch deaktiviert werden kann, schaltet das Gerät nach ungefähr 5 Minuten Nichtgebrauch aus.

3. VORBEREITUNG FÜR DIE VERWENDUNG

3.1. VORBEREITENDE PRÜFUNG

Die gesamte Ausrüstung ist vor dem Versand mechanisch und elektrisch überprüft worden. Es wurde dafür Sorge getragen, dass das Messgerät Sie unbeschädigt erreicht. Dennoch ist es ratsam, einen Check des Gerätes durchzuführen, um einen möglichen Schaden zu entdecken, der während des Transportes verursacht worden sein könnte. Sollten Sie Anomalien feststellen, wenden Sie sich bitte sofort an Ihren Händler.

Überprüfen Sie den Inhalt der Verpackung, der in Absatz **10.7** aufgeführt wird. Bei Diskrepanzen verständigen Sie den Händler. Sollte es notwendig werden, das Gerät zurückzuschicken, bitte folgen Sie den Anweisungen in Absatz **12**.

3.2. VERSORGUNG DES GERÄTES

Das Gerät ist durch Batterien versorgt. Batterie-Typ und Lebensdauer finden Sie im § 10.5.

Das Symbol "Zeigt den Batterieladezustand an. Wenn der Batterieladezustand aufs Minimum sinkt, erscheint das Symbol " auf dem Display. In diesem Fall unterbrechen Sie die Prüfungen und ersetzen Sie die Batterien, wie im § 9.2 beschrieben.

Die gespeicherten Daten bleiben auch ohne Batterien im Gerät erhalten.

Das Gerät verfügt über hoch entwickelten Algorithmen, um die Batterielebensdauer zu maximieren.

Durch kurzes Drücken der 🌣 Taste schalten Sie die Hintergrundbeleuchtung des Displays ein. Um die Batterien zu sparen, schaltet sich die Hintergrundbeleuchtung automatisch nach ungefähr 30 Sekunden wieder aus.

Häufige Nutzung der Displaybeleuchtung verkürzt die Batterielebensdauer.

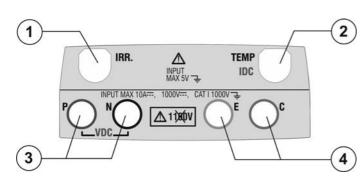
3.3. KALIBRATION

Das Gerät erfüllt die technischen Merkmale, die in diesem Handbuch beschrieben werden. Sie wird ab Kaufdatum für die Dauer von 12 Monaten garantiert.

3.4. LAGERUNG

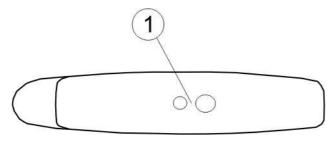
Um genaue Messungen zu erhalten, nach einer langen Lagerung des Gerätes unter extremen Umweltbedingungen, warten Sie, bis das Gerät wieder normale Bedingungen erreicht hat, bevor Sie es benutzen (siehe Umgebungs-Spezifikationen in Absatz **10.6**).

4. NOMENKLATUR


4.1. GERÄTEBESCHREIBUNG

LEGENDE:

- 1. Eingänge
- 2. Display
- Anschlussstecker für optische Schnittstelle/USB
- 4. Pfeiltasten/ENTER
- 5. GO/STOP Taste
- 6. SPEICHER-Taste
- 7. ON/OFF Taste
- 8. **HELP** / Taste
- 9. ESC/MENU Taste


Abb. 1: Frontansicht

LEGENDE:

- 1. Eingang für die Referenzzelle
- 2. Eingang für Temperaturmessfühler & Gleichstromzange (IVCK, EFF)
- 3. P, N Eingänge für die Messung der Gleichspannung (IVCK, EFF) / Isolation (M Ω)
- 4. E, C Eingänge für Durchgangstests (LOW Ω)

Abb. 2: Obenansicht

LEGENDE:

 Anschlussstecker für das optoisolierte Schnittstellenkabel/USB

Abb. 3: Seitenansicht

4.2. BEDIENTASTENBESCHREIBUNG

Das Bedienfeld besteht aus folgenden Tasten:

ON/OFF Ein-/Ausschalter

ESC/MENU Menüaufruf- und Esc- oder Annullier-Taste

▲ ▶ ▼ Pfeiltasten zur Cursorbewegung auf dem Display, zur Auswahl der Programmierungsparameter

ENTER Taste zur Bestätigung der durchgeführten Änderungen, der ausgewählten Parameter und zur Funktionsauswahl aus dem Menü

GO/STOP Taste zum Beginn und Ende einer Messung

SAVE Taste zur Speicherung der Messwerte

HELP Taste: Langer Druck auf diese Benutzerhilfetaste stellt auf dem Display schematisch dar, wie das Gerät zur Messung angeschlossen werden muss. Kurzer Druck der 🔅 Taste schaltet die Display-Hintergrundbeleuchtung ein

4.3. DISPLAY-BESCHREIBUNG

Das Gerät verfügt über eine Grafikanzeige mit 128 x 128 15/05/12 15:34:26 Punkten. Ganz oben am Display sehen Sie das Datum und die Uhrzeit des Systems, sowie den Batterieladezustand.

In der untersten Zeile erscheint die jeweils angewählte Funktion, die mit ENTER eingeschaltet werden kann und daneben die aktuell aktive Funktion.

Das Symbol **1** zeigt eine aktive Funkverbindung mit dem externen Datenlogger SOLAR-02 an.

Wenn das Symbol **± m** blinkt, läuft die Suche nach einer Funkverbindung mit dem externen Datenlogger SOLAR-02.

15/05/12 15:34:26

4.4. BEGRÜßUNGSBILDSCHIRM

Wenn das Gerät eingeschaltet wird, wird der Anfangs-Bildschirm einige Sekunden lang angezeigt. Der Bildschirm enthält folgende Informationen:

- Das Gerätemodell (PVCHECK)
- Herstellerlogo
- Internes Funkverbindungsmodul vorhanden (RF)
- Seriennummer (SN:) des Messgeräts
- Firmware-Version (FW:) des Messgerätes
- Letztes Kalibrierdatum

PVCHECK

HΤ

RF SN: 12345678

FW: 6.03 Kalibrierdatum: 18/11/2012

Anschließend erscheint die zuletzt benutzte Messfunktion.

5. HAUTPMENÜ

Mit der **ESC/MENU** Taste wird das Hauptmenü aufgerufen. Hier können Einstellungen vorgenommen, gespeicherte Messwerte angezeigt und die benötigte Messfunktion eingeschaltet werden.

Mit dem Cursor wählen Sie die gewünschte Funktion und bestätigen dann mit **ENTER**.

ü aufgerufen.
gespeicherte
Messfunktion

Funktion und

MΩ Isolationsmessung

EFF Leistungsmessung

SET Einstellungen

DB Datenbank

MEM Speicher

PC RS-232

Auswahl mit Enter

MENU

5.1. SET – KONFIGURATIONS-EINSTELLUNGEN

Mit den Pfeiltasten (▲,▼) stellen Sie den Cursor auf SET und bestätigen Sie mit ENTER. Es erscheint der Bildschirm mit Zugriff auf die verschiedenen Messgeräteeinstellungen.

Diese Einstellungen werden automatisch gespeichert und bleiben auch nach Abschaltung des Gerätes erhalten.

15/05/12 15:34:26

ALLGEMEIN

Messeinheit

Datum und Uhrzeit

Remote / Referenzzelle

Einstrahlung

Stromzange DC

Auswahl mit Enter

5.1.1. Allgemein

- 1. Mit den Pfeiltasten (▲,▼) stellen Sie den Cursor auf 15/05/12 15:34:26 Allgemein und bestätigen Sie mit ENTER.
- 2. In diesem Untermenü wird eingestellt:
 - > Anzeigesprache
 - Aktivierung/Deaktivierung der automatischen Ausschaltung
 - Anzeigekontrast
 - Akustischer Tastenton
- Bewegen Sie den Cursor mit den Auf/Ab (▲,▼)
 Pfeiltasten auf den zu ändernden Untermenüpunkt und
 wählen Sie dann den gewünschten Wert mit den
 Links/Rechts Pfeiltasten (◀, ▶).
- 4. Drücken Sie **SAVE**, um die Einstellungen abzuspeichern. Während der Speicherung wird "Daten gespeichert" angezeigt. Drücken Sie **ESC/MENU** um die geänderten Einstellungen nicht zu speichern und ins vorherige Menü zurückzukehren.

5.1.2. Messeinheit

Dieser Abschnitt ermöglicht die Einstellung der Messeinheit von einigen Parametern, die in der Datenbank (DB) der PV-Module (siehe § **5.6**) für die IVCK Messung vorhanden sind.

- 1. Mit den Pfeiltasten (♠,▼) stellen Sie den Cursor auf 15/05/12 15:34:26
 "Messeinheiten" und bestätigen Sie mit ENTER.
- 2. Es erscheint nun der Bildschirm, auf dem Sie die Messwerteinheiten der folgenden Parameter festlegen können.
 - Alpha → Auswahl ist hier: "%/°C" und "mA/°C"
 - Beta → Auswahl ist hier: "%/°C" und "mV/°C"
 - Gamma → angegeben in "%/°C"
 - Toleranz Voc und Isc → angegeben in "%"
- 3. Wählen Sie die bevorzugte Messeinheit mit den Pfeiltasten (◀, ▶).
- 4. Drücken Sie **SAVE**, um die Einstellungen abzuspeichern. Während der Speicherung wird "Daten gespeichert" angezeigt.
- 5. Drücken Sie **ESC/MENU** um die geänderten Einstellungen nicht zu speichern und ins vorherige Menü zurückzukehren.

Alpha : 4 %/°C ► Beta : %/°C Gamma : %/°C Toleranz : % Mit SAVE speichern SET

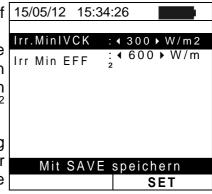
5.1.3. Datum/Uhrzeit

- Mit den Pfeiltasten (▲,▼) stellen Sie den Cursor auf 15/05/12
 "Datum/Uhrzeit" und bestätigen Sie mit ENTER.
- In diesem Untermenü können Datums- und Uhrzeitanzeige entweder im europäischen Format Europa (EU) oder im USA Format USA (US) eingestellt werden.
- 3. Wählen Sie die bevorzugte Messeinheit mit den Pfeiltasten (◀, ▶).
- 4. Drücken Sie **SAVE**, um die Einstellungen abzuspeichern. Während der Speicherung wird "Daten gespeichert" angezeigt. Drücken Sie **ESC/MENU** um die geänderten Einstellungen nicht zu speichern und ins vorherige Menü zurückzukehren.

5.1.4. Remote / Referenzzelle

In diesem Untermenü können vorhandene Zusatzgeräte (externer Datenlogger oder die Referenzzelle) ausgewählt werden und die Werte (Ausgangssignal und Alpha) der mitgelieferten Referenzzelle eingestellt werden. Die zu wählenden Parameterwerte sind auf der Referenzzellenrückseite aufgedruckt und richten sich nach dem Typ vom zu messenden Modul.

- 1. Mit den Pfeiltasten (▲,▼) stellen Sie den Cursor auf 15/05/12 15:34:26 Remote und bestätigen Sie mit ENTER.
 - ➤ Es erscheint nun der Bildschirm, auf dem Sie die Verwendung des externen Datenloggers für EFF oder IVCK Tests festlegen können. Es stehen folgende Optionen zur Verfügung:
 - ➤ JA (Verwendung externer Datenlogger SOLAR-02)
 - NEIN (keine Verwendung vom SOLAR-02). Bei Nichtverwendung des externen Datenlogger SOLAR-02 für IVCK Tests ist es notwendig, die Werte vom Ausgangssignal und vom Alpha-Parameter der mitgelieferten Referenzzelle im PV CHECK einzustellen.
- 2. Diese Werte werden mit den Pfeiltasten (◀ , ▶) eingestellt.
- 3. Drücken Sie **SAVE**, um die Einstellungen abzuspeichern. Während der Speicherung wird "Daten gespeichert" angezeigt. Drücken Sie **ESC/MENU** um die geänderten Einstellungen nicht zu speichern und ins vorherige Menü zurückzukehren.



5.1.5. Einstrahlung

Dieser Abschnitt ermöglicht die Einstellung des Mindestgrenzwerts für die Einstrahlung sowohl für die IVCK Messung als auch für den Leistungstest einer PV-Installation.

- 1. Mit den Pfeiltasten (♠,▼) stellen Sie den Cursor auf "Einstrahlung" und bestätigen Sie mit ENTER.
- 2. Es erscheint nun der Bildschirm, der folgende Elemente anzeigt: "Irr min IVCK". In diesem Untermenü werden eingestellt: " Der gewünschte Mindestwert für die mit dem PV CHECK zu messenden Einstrahlungsstärke in W/m² Mit den Pfeiltasten (▲,▼) wählen Sie die Optionen aus.
- Zur Einstellung des Mindestgrenzwerts der Einstrahlung benutzen Sie die Pfeiltasten (◀ , ►). Die in der vorliegenden Bedienungsanleitung angegebene Genauigkeit wird unter den in § 10 angeführten Bedingungen garantiert. Der Wert kann im Bereich 0 ÷ 800 W/m² eingestellt werden.
- 4. Drücken Sie **SAVE**, um die Einstellungen abzuspeichern. Während der Speicherung wird "Daten gespeichert" angezeigt. Drücken Sie **ESC/MENU** um die geänderten Einstellungen nicht zu speichern und ins vorherige Menü zurückzukehren.

WARNUNG

Die Einstellung "0 W/m²" für Parameter "Irr min IVCK" ermöglicht die Durchführung der IVCK Messung, ohne dass die folgenden Bedingungen überprüft werden:

- Verbindung mit der Referenzzelle am IRR Eingang des Gerätes
- > Instabile Einstrahlungswerte
- Anzahl der Module konsistent mit der gemessenen Leerlaufspannung

5.1.6. Gleichstrom-Messzange

Zur Genauigkeitsverbesserung von Gleichstrommessungen kann mit dieser Einstellung ein **möglicher** Korrekturfaktor K für die Gleichstrom-Messzange eingestellt werden. Wenn für die Strommesszange ein derartiger Korrekturfaktor im Werk ermittelt wurde, ist er am rückseitigen Etikett der Zange in der Form von:

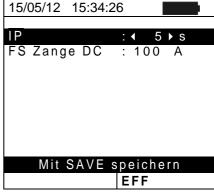
angegeben. Wenn kein Etikett vorhanden ist, stellen Sie bitte k = 1.000 ein.

- 1. Mit den Pfeiltasten (▲,▼) stellen Sie den Cursor auf 15/05/12 15:34:26 Gleichstrom-Messzange und bestätigen Sie mit ENTER.
- 2. Es erscheint die Anzeige: "DC Zange K" am Display, wo dann der Korrekturfaktor zwischen 0.950 und 1.050 eingestellt werden kann. Diese Werte werden mit den Pfeiltasten (◀, ▶) eingestellt.
- 3. Drücken Sie **SAVE**, um die Einstellungen abzuspeichern. Während der Speicherung wird "Daten gespeichert" angezeigt. Drücken Sie **ESC/MENU** um die geänderten Einstellungen nicht zu speichern und ins vorherige Menü zurückzukehren.

5.2. EFF – EINSTELLUNGEN FÜR DEN LEISTUNGSTEST VON PV-ANLAGEN

Zweck dieser Messung ist die Bewertung der Gleichstromleistung einer photovoltaischen Installation, mit der Möglichkeit, ein positives oder negatives Ergebnis der Prüfung/Aufzeichnung zu erhalten, gemäß der vom Benutzer definierten frei einstellbaren Vorgabe. Für diesen Test ist die Verwendung ders optionalen Datenloggers SOLAR-02 notwendig (siehe § 6)

5.2.1. Messgeräteinstellungen


 Mit den Pfeiltasten (▲,▼) stellen Sie den Cursor auf EFF und bestätigen Sie mit ENTER. Das Display zeigt nun die aktuellen Parameter und Messwerte der PV-Anlage.

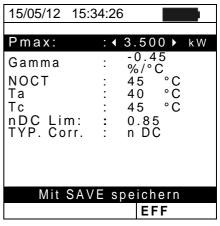
F	15/05/12	15:34:26	
е	Irr Pnom Tc Ta Pdc Vdc Idc ndc	3.500 0.0 0.000 0.000	W/m2 kW °C °C kW V
	GO St Auswahl	art Aufze	ichnung EFF

- 2. Drücken Sie die **ENTER** Taste. Das Messgerät zeigt folgende Auswahlmöglichkeiten: **Anlagenparameter** und **Geräteinstellungen**
- 3. Mit den Pfeiltasten (▲,▼) wählen Sie "Geräteinstellungen" und bestätigen Sie mit ENTER. Das Gerät zeigt den folgenden Bildschirm:

	15/05/12	15:34:26	
	Irr		W/m2
	Pnom	3.500	k W
	Тc		°C
•	Та		° C
	Pdc	0.0	k W
	Vdc	0.000	V
	ldc	0.0	Α
	ndc		
	Paramete	r PV Anlag	е
	Einstellu	ung Instru	um.
	Auswahl		EFF

- 4. Mit den Pfeiltasten (◀ , ▶) kann folgendes eingestellt 15/05/12 15:34:26 werden:
 - Die Integrationszeit (PI), die das Gerät bei der Prüfung der Parameter einer PV-Anlage verwendet. Folgende Zeiten stehen zur Auswahl 5s, 10s, 30s, 60s, 120s, 300s, 600s, 900s, 1800s, 3600s.
 - ➤ FS der DC-Zange: Strommesszangen-Messbereich für Gleichstrommessungen mit Einstellwerten von 1A ÷ 3000A
- 5. Drücken Sie SAVE, um die Einstellungen abzuspeichern. Während der Speicherung wird "Daten gespeichert" angezeigt. Drücken Sie ESC/MENU um die geänderten Einstellungen nicht zu speichern und ins vorherige Menü zurückzukehren.

5.2.2. PV-Anlagenparameter


 Mit den Pfeiltasten (▲,▼) stellen Sie den Cursor auf EFF und bestätigen Sie mit ENTER. Das Display zeigt nun die aktuellen Parameter und Messwerte der PV-Anlage.

15/05/12	15:34:26	
Irr Pnom Tc Ta Pdc Vdc Idc ndc	3.500 0.0 0.000 0.000	W/m2 kW °C °C kW V A
GO Au	zeichnun	g starten
Auswahl		EFF

- 2. Drücken Sie die **ENTER** Taste. Das Messgerät zeigt folgende Auswahlmöglichkeiten: **Anlagenparameter** und **Geräteinstellungen**
- 3. Mit den Pfeiltasten (▲,▼) wählen Sie "Anlagenparameter" und bestätigen Sie mit ENTER. Das Gerät zeigt den folgenden Bildschirm:

15/05/12	15:34:26	
Irr		W/m2
Pnom	3.500	k W
Тc		°C
Та		°C
Pdc	0.0	k W
Vdc	0.000	V
ldc	0.0	Α
ndc		
Paramete	r PV Anlage	9
Einstllur	ng Instrum	nent
Auswahl		EFF

- 4. Mit den Pfeiltasten (◀ , ▶) kann folgendes eingestellt 15/05/12 15:34:26 werden:
 - ➤ Pmax → die maximale DCGesamtnennleistung einer PV-Anlage, in kW angegeben
 - ➤ Gamma → der temperaturabhängige Leistungs-Koeffizient, ein Standardparameter der PV Module (mit typischen Werten von: -0.3 ÷ -0.5%/C)
 - NOCT → die nominale Arbeitstemperatur einer PV-Zelle, ein Standardparameter der PV-Module (mit typischen Werten von: 42 ÷ 48°C)
 - ➤ Ta, Tc → Einstellung der Umgebungs- (Ta) und PV Modul-(Tc) Temperaturwerte. Das Messgerät benutzt diese hinterlegten Werte nur, wenn der Temperaturmessfühler nicht am Datenlogger SOLAR-02 angeschlossen ist.
 - ➤ nDC Lim → Mindestgrenzwert für Wirkungsgrad der Gleichstromleistung (Werkseinstellung: 0.85)
 - ➤ Korr. Typ → hier kann die Berechnungsgrundlage für den DC Wirkungsgrad ausgewählt werden (siehe § 5.2.3)

5.2.3. Auswahl der Berechnungsgrundlage für die Temperatur-Effekte

Hier kann die Berechungsgrundlage für den DC-Wirkungsgrad hinterlegt werden.

Die folgenden 3 Auswahlmöglichkeiten für den Korrekturfaktor stehen zur Verfügung:

T.mod.:
 T.env:
 Norrekturfaktor Rfv2 bezogen auf die PV Modultemperatur (Italienische Richtlinie CEI-82-25)
 Korrekturfaktor Rfv2 bezogen auf die PV Umgebungstemp. (Italienische Richtlinie CEI-82-25)
 PRp (Performance Ratio für Wirkleistung) mit Berücksichtigung der PV Modultemperatur

ACHTUNG

Sofern die Messung nach der Italienischen Richtlinien erfolgen soll ist die Einstellung "T.env." auszuwählen. Für die Standardmessungen in Deutschland ist die Einstellung "nDC" auszuwählen

Die höchste Effizienz (Maximum Wert von PRp) wird anhand der folgenden Beziehungen ermittelt: (In Deutschland ist entsprechend als Korrekturtyp η_{dc} zu verwenden)

Korr. Typ	Verwendete Temperatur (Tcel)	Berechnung von nDC	
T.mod.	Tcel = Tmoduli_Mis	$\int 1 \qquad (se Tcel \le 40^{\circ}C)$	
T.env.	$Tcel = \left(Tamb + \left(NOCT - 20\right) \times \frac{Irr}{800}\right)$	$R \text{fv2} = \begin{cases} 1 & \text{(se Tcel} \le 40^{\circ}\text{C)} \\ 1 - (\text{Tcel} - 40) \times \frac{ \gamma }{100} & \text{(se Tcel} > 40^{\circ}\text{C)} \end{cases}$ $daher$ $nDC = \frac{P_{dc}}{\left[R \text{fv2} \times \frac{G_p}{G_{STC}} \times P_n\right]}$	CEI 82- 25
nDC	Tcel = Tmoduli_Mis	$nDC = \frac{G_{STC}}{G_p} \times \left[1 + \frac{ \gamma }{100} \times \left(T_{cel} - 25\right)\right] \times \frac{P_{dc}}{P_n}$	

Wobei:

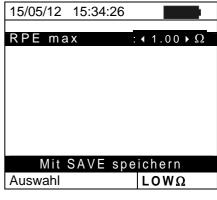
Symbol	Beschreibung	Messeinh eit
G_p	Einstrahlung auf PV Modulberfläche	$\left[W/m^2 \right]$
$G_{ extit{STC}}$	Einstrahlung unter Standardbedingungen = 1000	$\left[W/m^2 \right]$
P_n	Nennleistung = Summe aller Pmax der PV Module, die bei der Messung mit einbezogen werden	[kW]
P_{dc}	DC Leistung, gemessen am Ausgang der PV-Anlage	[kW]
Rfv2	Korrekturfaktor nach der Temperatur der PV-Zellen (Tcel), gemessen oder berechnet nach dem ausgewählten Typ von Korrekturverhältnis	
	Absolutwert des Temperaturkoeffizienten von Pmax der PV-Module, die bei der Messung mit einbezogen werden	[%/°C]
NOCT	(Normal Operating Cell Temperature) = Betriebsnenntemperatur der PV Zellen (800W/m², 20°C, AM=1.5, Luftgeschwindigkeit =1m/s).	[%/°C]

.

5.3. LOW Ω – EINSTELLUNGEN FÜR DEN DURCHGANGSTEST

Zweck dieser Messung ist die Durchführung eines Durchgangstests an den Schutz- und Potentialausgleichsleitern. Der Test muss mit einem Prüfstrom > 200mA gemäß den Vorschriften der EN62446 und IEC60364 durchgeführt werden.

5.3.1. Messgeräteinstellungen


 Mit den Pfeiltasten (Ω,▲) stellen Sie den Cursor auf LOW▼ und bestätigen Sie mit ENTER. Das Gerät zeigt den folgenden Bildschirm:

f	15/05/12	15:34:	:26	
	RPE max Rcal	:	1.0	Ω
F	Rpe	=		Ω
I	Itest	=		m A
	Auswahl		LC	ΩWΩ

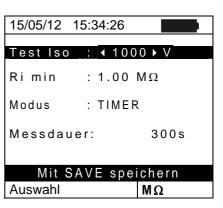
- Drücken Sie die ENTER Taste. Das Messgerät zeigt folgende Auswahlmöglichkeiten: Einstellungen und Kalibration der Leitungen
- Mit den Pfeiltasten (▲,▼) wählen Sie "Einstellungen" und bestätigen Sie mit ENTER. Das Gerät zeigt den folgenden Bildschirm.

Γ	45/05/40	45.04.	00		
	15/05/12	15:34:	26		
	RPE max Rcal	:	1	. 0	Ω
, ŀ	i Cai	•			32
1	Rpe	=		-	Ω
	Itest	=		-	m A
ĺ	Kalibirerun	g			
ı	Einstellu	ngen			
	Auswahl			L	ΩΜΩ

- 5. Drücken Sie **SAVE**, um die Einstellungen abzuspeichern. Während der Speicherung wird "Daten gespeichert" angezeigt. Drücken Sie **ESC/MENU** um die geänderten Einstellungen nicht zu speichern und ins vorherige Menü zurückzukehren.

5.4. $M\Omega$ – EINSTELLUNGEN FÜR DIE ISOLATIONSMESSUNG

5.4.1. Messgeräteinstellungen


 Mit den Pfeiltasten (▼,▲) stellen Sie den Cursor auf MΩ und bestätigen Sie mit ENTER. Das Gerät zeigt den folgenden Bildschirm:

15/05/12	15:34:26	
Test Iso Ri min Modus	: 1000 : 1.0 : String	V ΜΩ
Vtest	=	V
Ri (+)	=	Ω
Ri (-)	=	Ω
Auswahl	MΩ	2

- 2. Drücken Sie die **ENTER** Taste. Das Messgerät zeigt die folgende Auswahlmöglichkeit: **Einstellungen**
- 3. Bestätigen Sie mit **ENTER**. Das Gerät zeigt den folgenden Bildschirm:

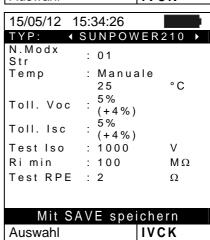
15/05/12	15:34:26	
Test Iso Ri min Modus	: 1000 : 1.0 : String	V MΩ
Vtest	=	V
Ri (+)	=	Ω
Ri (-)	=	Ω
Einstellu	ıng	
Auswahl	M	Ω

- 4. Bewegen Sie den Cursor mit den Auf/Ab (▲,▼)
 Pfeiltasten auf den zu ändernden Untermenüpunkt und
 wählen Sie dann den gewünschten Wert mit den
 Links/Rechts Pfeiltasten (◀ , ▶). Sie können die
 folgenden Parameter einstellen:
 - ➤ Test Iso → Prüfspannung: 250, 500, 1000VDC
 - ➤ Modus → Betriebsmodi: Feld, Timer, String
 - ➤ Ri Lim → min. Grenzwert für den Isolationswiderstand
 - ➤ **Testzeit** → Maximale Testdauer (nur für TIMER Auswahl Modus) mit Maximalwert 300s in Schritten von 1s
- 5. Drücken Sie **SAVE**, um die Einstellungen abzuspeichern. Während der Speicherung wird "Daten gespeichert" angezeigt. Drücken Sie **ESC/MENU** um die geänderten Einstellungen nicht zu speichern und ins vorherige Menü zurückzukehren.

5.5. IVCK - EINSTELLUNGEN FÜR DEN IVCHECK SCHNELLTEST

Diese Funktion ermöglicht die Durchführung einer schnellen Prüfung eines PV Moduls / Strings (Messung der Leerlaufspannung und des Kurzschlussstrom nach IEC EN 62446). Zusätzlich können auch die Einstrahlungs – und die PV-Modultemperaturwerte (mit optionalem Zubehör) mit gemessen werden um die STC Betriebsbedingungen herzustellen. Diese Testeinstellung ermöglicht auch die Durchführung (wenn ausgewählt) des Durchgangstests und der Isolationsmessung.

5.5.1. Messgeräteinstellungen


 Mit den Pfeiltasten (▲,▼) stellen Sie den Cursor auf IVCK und bestätigen Sie mit ENTER. Das Gerät zeigt den folgenden Bildschirm:

15/05/12	15:34:	26	
Modul	:	SUNP	318
Vdc	:	0.0	V
Irr	:	0	W/m2
Тc	:	Auto	° C
Voc,Isc:			
Ri(1000V) =		$M\Omega$
Rpe (Cal)	=		Ω
Auswahl		IV	CK

- 2. Drücken Sie die ENTER Taste. Das Messgerät zeigt folgende Auswahlmöglichkeiten: Einstellungen, Reset AVG (siehe § 6.3.4) und Kalibration der Leitungen (siehe § 6.5.2)
- 3. Mit den Pfeiltasten (▲,▼) wählen Sie "Einstellungen" und bestätigen Sie mit ENTER. Das Gerät zeigt den folgenden Bildschirm:

- 4. Bewegen Sie den Cursor mit den Auf/Ab (▲,▼) Pfeiltasten auf den zu ändernden Untermenüpunkt und wählen Sie dann den gewünschten Wert mit den Links/Rechts Pfeiltasten (◀ , ►). Sie können die folgenden Parameter einstellen:
 - ➤ **Typ** → Typ vom zu messenden Modul
 - ➤ Anz.Mod. x Str. → Anzahl der Module im String. Erlaubte Werte 1 ÷ 50
 - ➤ **Temp** → Temperatur-Messmethode. Verfügbare Optionen:
 - "Auto" → automatische Messung, die nach dem

- gemessenen Wert der Leerlaufspannung Voc der Module durchgeführt wird (**empfohlene Methode**)
- "Manuell" → Der Benutzer gibt den bekannten Temperaturwert des Moduls in die darunter liegende Zeile manuell ein
- **Aux** → Die Temperatur wird mit Hilfe des Fühlers PT300N gemessen
- ➤ Voc Tol. (%) → Prozentwert der erlaubten Toleranzgrenze (wird durch den Benutzer sofern nötig eingestellt) für die Messung der Leerlaufspannung Voc durch das Gerät Erlaubte Werte: 0% ÷ 25%. Der Wert in Klammern (4%) gibt den Messfehler des Geräts bei der Voc Messung an.
- ➤ Isc Tol. (%) → Prozentwert der erlaubten Toleranzgrenze (wird durch den Benutzer sofern nötig eingestellt) für die Messung des Kurzschlussstroms Isc durch das Gerät. Erlaubte Werte: 0% ÷ 25%. Der Wert in Klammern (4%) gibt den Messfehler des Geräts bei der Isc Messung an.
- ► Iso Test → Aktivierung/Deaktivierung der Isolationsmessung und Einstellung der Testspannung. Mögliche Optionen: OFF, 250V, 500V, 1000V. Mit aktivierter Funktion erscheint die Zeile "Ri min", die eine Einstellung des Mindestgrenzwerts im Bereich 0.1 ÷ 100MΩ ermöglicht.
- ightharpoonup RPE Test ightharpoonup Aktivierung/Deaktivierung des Durchgangstests und Einstellung des Grenzwerts für die Messung. Mögliche Optionen OFF, 1Ω \div 5Ω in Schritten von 1Ω
- 5. Drücken Sie **SAVE**, um die Einstellungen abzuspeichern. Während der Speicherung wird "Daten gespeichert" angezeigt. Drücken Sie **ESC/MENU** um die geänderten Einstellungen nicht zu speichern und ins vorherige Menü zurückzukehren.

WARNUNG

Die gespeicherten Einstellungen für die Testspannung bei der Isolationsmessung in der Funktion IVCK beeinflussen auch die Einstellungen für die manuelle Messung im MENU \rightarrow M Ω .

5.6. DB – MODULDATENBANK

Das Messgerät erlaubt, die Kenndaten von bis zu **30 verschiedenen PV Modulen** zu definieren und in der internen Datenbank des Messgerätes zu hinterlegen. Diese hinterlegten Moduldaten können jederzeit wieder aufgerufen, modifiziert und gelöscht werden.

Dabei ist eine hinterlegte Standardeinstellung (default) nicht editierbar und nicht löschbar. Diese kann als Referenz benutzt werden, wenn keine Informationen über das zu überprüfende Solarmodul verfügbar ist.

Diese für **EIN PV Modul gültigen Kenndaten** sind der folgenden Tabelle zusammen mit dem Gültigkeitsbereich, der Toleranz und den Gültigkeitsbedingungen angegeben.

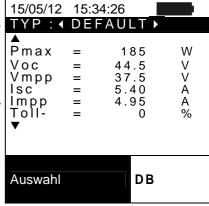
Symbol	Beschreibung	Bereich	Auflösung	Voraussetzung	
Nms	Anzahl der Module im String	1 ÷ 50	1		
Pmax	Maximale Nennleistung des Moduls	50 ÷ 3200W	1W	$\left \frac{P_{\text{max}} - V_{mpp} \cdot I_{mpp}}{P_{\text{max}}} \right \le 0.01$	
Voc	Leerlaufspannung	15.00 ÷ 99.99V 100.0 ÷ 320.0V	0.01V 0.1V	Voc ≥ Vmpp	
Vmpp	Spannung im Punkt der maximalen Leistung	15.00 ÷ 99.99V 100.0 ÷ 320.0V	0.01V 0.1V	Voc ≥ Vmpp	
Isc	Kurzschlussstrom	0.5 ÷ 9.99A	0.01A	lsc ≥ Impp	
Impp	Strom im Punkt der maximalen Leistung	0.5 ÷ 9.99A	0.01A	lsc ≥ Impp	
Tall	Vom Hersteller angegebene Minustoleranz für Pmax	0% ÷ 25.0%	0.1%	400*T-15/D	
Toll -		0 ÷ 99W	1	100*Tol ⁻ /Pnom< 25	
Toll +	Vom Hersteller angegebene	0 ÷ 25%	0.1%	100*Tol ⁺ /Pnom< 25	
1011+	Plustoleranz für Pmax	0 ÷ 99W	1		
Alpha	Temperaturkoeffizient des	-0.100÷0.100%/°C	0.001%/°C	0.1*Alfa / Isc ≤ 0.1	
Alpha	Kurzschlussstroms Isc	-9.99 ÷ 9.99mA/°C	0.01mA/°C		
Data	Temperaturkoeffizient der	-0.99 ÷ -0.01%/°C	0.01%/°C	400*Data ///a a < 0 000	
Beta	Leerlaufspannung Voc	-0.999 ÷ 0.001V/°C	0.001V/°C	100*Beta/Voc ≤ 0.999	
Gamma	Temperaturkoeffizient der Maximalleistung Pmax	-0.99 ÷ -0.01%/°C	0.01%/°C		
NOCT	Nenn-Betriebstemperatur der Solarzelle	0 ÷ 100°C	1°C		
Tech.	Auswahl der PV-Modul Technologie (Standard oder HIT Module)	STD (standard), CAP (kapazitiv)			
Rs	Interner Serienwiderstand	$0.00 \div 10.00\Omega$	0.01Ω		

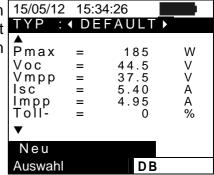
Tabelle 1: Kennwerte von PV Modulen in der Messgerätedatenbank

WARNUNG

- "Tech" bezeichnet sich auf die Auswahl der Technologie des zu messenden Moduls. Wählen Sie die "STD" Option für die Prüfung von "STANDARD" PV-Modulen oder "CAP" für die Prüfung von PV-Modulen mit höheren kapazitiven Effekten (z.B.: HIT/HIP Technologie).
- Eine falsche Auswahl von der Art der Technologie kann zu einem negativen Ergebnis der Abschlussprüfung führen.

5.6.1. Definition eines neuen PV Moduls


- 1. Mit den Pfeiltasten (♠,▼) stellen Sie den Cursor auf **DB** und bestätigen Sie mit **ENTER**. Auf dem Display erscheinen:
 - Typ des ausgewählten Moduls
 - Die zum Modul gehörigen Parameter
 - (siehe Tabelle 1: Kennwerte von PV Modulen in der Messgerätedatenbank
 -)
- 2. Mit den Pfeiltasten (◀ , ▶) wählen Sie das vorgegebene "DEFAULT"-Modul und bestätigen Sie mit ENTER.
- 3. Drücken Sie **ENTER**, wählen Sie "**Neu**" (das die Definition eines neuen Moduls ermöglicht) und bestätigen Sie erneut mit **ENTER**. Benutzen Sie die Pfeiltasten (♠,▼) zum Durchlaufen aller Modulparameter.


 15/05/12 15:34:26

 TYP: ▼ DEFAULT ►

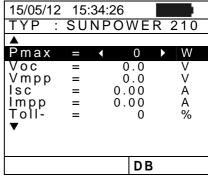
 Pmax = 185

 Voc = 44.55

- Mit der virtuellen Tastatur am Display kann man eine Modulbezeichnung eingeben (beispielsweise: SUNPOWER 210) mit den Pfeiltasten (▲, ▼, ◀ , ▶). Drücken Sie ENTER, um den jeweiligen Buchstaben (oder Zahl) einzutippen.
- 5. Wenn Sie den Modulnamen fertig gestellt haben, drücken Sie SAVE. Mit ESC/MENU gelangen Sie ins vorherige Menü zurück.

 A B C D E F G H I J K L M N O F Q R S T U V W X Y Z + 1 1 2 3 4 5 6 7 8 9 S P A C E D E L
- 15/05/12 15:34:26

 TYP:

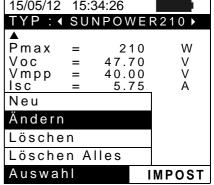

 Pmax = 185 W
 Voc = 44.5 V

 TASTATUR

 SUNPOWER 210

 A B C D E F G H I J K L M N O P
 Q R S T U V W X Y Z + 0 1 2 3
 4 5 6 7 8 9 SPACE DEL

 SAVE/ESC
- Den Wert jedes Parameters eingeben (siehe Tabelle 1: Kennwerte von PV Modulen in der Messgerätedatenbank
- 7.) entsprechend dem Datenblatt des Herstellers. Mit den Pfeiltasten (▲,▼) stellen Sie den Cursor auf den zu definierenden Parameter und mit den Pfeiltasten (◀, ►) geben Sie die entsprechenden Werte ein. Zur Schnelleinstellung der Werte halten Sie die (◀, oder ►) Tasten gedrückt.
- 8. Drücken Sie **SAVE**, um die Einstellungen abzuspeichern. Mit **ESC/MENU** gelangen Sie ohne Abspeicherung ins vorhergehende Menü.


WARNUNG

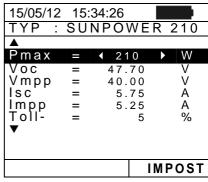
- Wenn Sie einen Parameter eingeben möchten, dessen Wert nicht im Herstellerdatenblatt aufgeführt ist, halten Sie die HELP Taste einige Sekunden gedrückt, damit der im Messgerätespeicher enthaltene Vorgabewert ersatzweise eingetragen wird.
- Nach Drücken der **SAVE** Taste überprüft das Messgerät die in der **Tabelle 1: Kennwerte von PV Modulen in** der Messgerätedatenbank aufgeführten Werte. Falls dabei Widersprüche gefunden werden, erscheinen eine oder mehrere Fehlermeldungen im Display (§ **6.6**). Diese Fehler müssen korrigiert werden, damit die PV Modulwerte abgespeichert werden können.

5.6.2. Datenbank-Kenndatenänderung eines PV Moduls

- 1. Wählen Sie das PV Modul, dessen Daten geändert 15/05/12 15:34:26 werden sollen, mit den Pfeiltasten (◀, ▶).
- Drücken Sie ENTER und wählen Sie "Ändern" mit der Pfeiltaste (▼).
- 3. Bestätigen Sie mit ENTER.

- 4. Mit der virtuellen Tastatur am Display kann mit den Pfeiltasten (▲, ▼, ◀ , ▶) eine andere Modulbezeichnung eingeben werden. Drücken Sie ENTER, um den jeweiligen Buchstaben (oder Zahl) einzutippen.

 15/05/12 15:34:26


 TYP: ✓ SUNPOWER210 ▶

 A Pmax = 185 W

 Voc = 44.5 V
- 5. Wenn Sie den geänderten Modulnamen fertig gestellt haben, drücken Sie **SAVE**. Damit gelangen Sie zur Einstellung der neuen Parameter.

- 6. Ändern Sie den Wert der gewünschten Parameter mit den 15/05/12 Pfeiltasten (▲,▼) und geben Sie den neuen Wert mit den Pfeiltasten (◀, ►) ein. Zur Schnelleinstellung der Werte halten Sie die (◀, ▶) Tasten gedrückt. Wenn Sie einen Parameter antreffen. dessen Wert nicht im Herstellerdatenblatt steht, halten Sie die HELP Taste Sekunden gedrückt, damit Messgerätespeicher enthaltene Vorgabewert ersatzweise eingetragen wird.
- 7. Drücken Sie **SAVE**, um die Einstellungen abzuspeichern. Mit **ESC/MENU** gelangen Sie ohne Abspeicherung ins vorhergehende Menü. Falls das Gerät die Daten nicht speichern kann, wird "Daten nicht gespeichert" angezeigt.

5.6.3. Datenbank-Kenndaten Löschung eines PV Moduls

- Wählen Sie das PV Modul, dessen Daten gelöscht werden sollen, mit den Pfeiltasten (◀, ►).
- 2. Drücken Sie **ENTER** und wählen "**Löschen**" mit der Pfeiltaste (▼) um die Daten und das eine, angewählte PV Modul aus dem Speicher zu entfernen.
- 3. Drücken Sie **ENTER** und wählen Sie "**Alle Löschen**" mit der Pfeiltaste (▼) um die Daten aller im Messgerätespeicher enthaltenen PV Module (außer den vorgegebenen Modul) zu entfernen.
- 4. Bestätigen Sie mit **ENTER** und dann **ESC/MENU** zum Verlassen dieses Menüpunkts.

t	15/05/12	15:3	34:26	
	TYP : ◀	US	NPOWE	R210 ▶
	Pmax Voc Vmpp Isc	= = = =	210 47.70 40.00 5.75	><<
ì	Ändern			
1	Lösche	n		
	Lösche	n A	lles	
١	Auswah	ı I	ı	MPOST

WARNUNG

Die Änderung oder Löschung des vorgegebenen DEFAULT Moduls ist nicht möglich.

6. MESSUNG DURCHFÜHREN

6.1. WIRKUNGSGRADMESSUNG MIT EXTERNEM DATENLOGGER SOLAR-02

Zur Vereinfachung wird nachfolgend der Begriff "String" gebraucht, obwohl eigentlich "PV Modulfeld" richtiger wäre. Vom Messgerät aus gesehen, ist die Behandlung eines einzelnen Strings oder mehrerer parallel geschalteter Strings (als PV-Feld) identisch. Das PVCHECK Messgerät (Hauptgerät) kann mit Hilfe des optionalen Datenloggers SOLAR-02 und angeschlossenen Einstrahlungs- und Temperaturmessfühler, den DC Wirkungsgrad der PV-Anlagen ermitteln. Das SOLAR-02 steht mit dem Hauptgerät zwecks Synchronisierung und Datenübertragung mittels Funkverbindung (auch **RF** genannt) über Entfernungen von maximal **1m** in Verbindung.

WARNUNG

- Die höchste zulässige Spannung zwischen den Eingängen P und N ist 1000 VDC. Versuchen Sie nicht, Spannungen zu messen, die die Grenzwerte, die in diesem Handbuch angegebenen werden, überschreiten. Das Überschreiten der Grenzwerte könnte einen elektrischen Schock verursachen und das Messgerät beschädigen.
- Zur Sicherheit des Benutzers müssen bei der Erstellung der Anschlüsse die Leitungsschalter vor und hinter dem DC/AC Wechselrichter geöffnet werden.

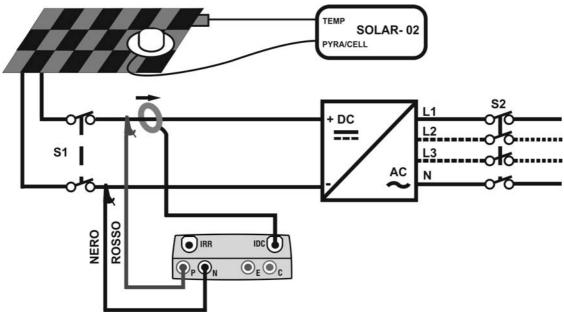


Abb. 4: Verbindung des Gerätes für DC Leistungsmessung an einer PV-Anlage

- 1. Überprüfen Sie die korrekte Einstellung des Ausgangsignals der Referenzzelle am SOLAR-02 (siehe Bedienungsanleitung der SOLAR-02).
- 2. Vor dem eigentlichen Test sollte mit der Referenzzelle und dem nicht am Hauptgerät angeschlossenen SOLAR-02 die Sonneneinstrahlstärke an der Oberfläche des zu prüfenden PV Moduls überprüft werden.
- 3. Schalten Sie das PVCHECK ein, kontrollieren und ändern Sie erforderlichenfalls die Messgeräte-Grundeinstellungen für den Datenloggertyp, die Minimum-Einstrahlstärke, den Messbereich der DC-Strommesszange, Integrationszeit und die Parameter der zu prüfenden PV-Anlage (siehe § **5.1.4**, § **5.1.5**, § **5.1.6**, § 5.2.1 und § 5.2.2).
- 4. Zur Sicherheit des Prüfenden müssen die Leitungsschalter vor und hinter dem DC/AC Wechselrichter (Inverter) geöffnet werden.

- 5. Stellen Sie das PVCHECK und die SOLAR-02 in einem Abstand von weniger als 1 Meter voneinander auf. Schalten Sie alle Geräte ein (für Einzelheiten siehe die Bedienungsanleitung der SOLAR-02).
- 6. Am PVCHECK drücken Sie nun **MENU**, wählen Sie dann die Funktion **EFF** (Efficiency = Wirkungsgrad) und drücken Sie **ENTER**; Warten Sie, bis die Funkverbindung unter den beiden Geräten aufgebaut ist. Sobald diese Verbindung besteht, erscheinen die folgenden Symbole am Display gleichzeitig und konstant:
 - > Symbol **1** am Display des PVCHECKs erscheint konstant (kein Blinken)
 - > Symbol **1** am Display der SOLAR-02 erscheint konstant (kein Blinken)
- 7. Schließen Sie nun die Messgeräte-Eingangsbuchsen P mit dem Pluspol und N mit dem Minuspol des zu messenden Strings an. Dabei achten sie auf die Farben, die in der Abb. 4: Verbindung des Gerätes für DC Leistungsmessung an einer PV-Anlage gezeigt werden.
- 8. Verbinden Sie den Ausgangstecker der DC-Strommesszange mit dem **IDC** Eingang des Messgeräts.

WARNUNG

VOR Anschluss DER DC-MESSZANGE MIT DEN LEITERN Schalten Sie die Strommesszange ein, prüfen Sie die LED Anzeige für den Ladezustand der Batterien, wählen Sie den richtigen Stromstärkebereich, drücken Sie die NULL-Taste an der DC-Strommesszange und prüfen Sie am PVCHECK die momentane Nullanzeige des entsprechenden Idc Wertes (Werte bis 0,02 A sind zulässig).

- 9. Schließen Sie DC-Strommesszange Pluspol die am des Strings unter Berücksichtigung der Pfeilrichtung siehe an, Abb. 4: Verbindung des Gerätes für DC Leistungsmessung an einer PV-Anlage 10. Bringen Sie die DC-Strommesszange weit genug vom Wechselrichter entfernt an.
- 11. Das Display zeigt nun die erste Bildschirmseite, die die aktuellen elektrischen Parameter am Ausgang des Moduls/Strings enthält.
- 12. Vor der Messung kontrollieren Sie, ob das Symbol "
 im Display konstant leuchtet, was die korrekte
 Funkverbindung des Messgeräts mit dem SOLAR-02
 angibt.

е	15/05/12	15:34:26	
s 	Irr Pnom Tc Ta Pdc Vdc Idc ndc	3.500 45 30 3.125 389 8.01	W/m2 kW °C kW V A
	St Auswahl	arten mit	GO EFF ± ⋒

13. Mit dem SOLAR-02 in der Nähe des Messgeräts, drücken Sie nun GO/STOP am PVCHECK, um die Messung zu beginnen. Im Messgerätedisplay erscheint "Rec. Warte auf Start..." (Aufzeichnungsbeginn, bitte warten) und am SOLAR-02 Display wird "HOLD" angezeigt, bis beide Geräte synchronisiert sind (zur vollen Minute, d.h. Ende der Wartezeit wenn "00" erreicht wird).

15/05/12	15:34:26	
Irr Pnom Tc Ta Pdc Vdc Idc ndc	3.500 45 30 3.125 389 8.01	W/m2 kW °C °C kW V A
Aufze Auswahl	ichnung	wartend EFF ± ⋒

14. Wenn "00" nach dem Drücken von GO/STOP erscheint, sind die Geräte synchronisiert und die Messung beginnt. Während der Messung zeigt das Messgerät "Aufzeichnung..." im Display und auch im Display der SOLAR-2 erscheint nun "Recording...".

t,	15/05/12	15:35:00	
t.	Irr		W/m2
t	Pnom	3.500	kW
r	Tc	45	°C
	Te Pdc	30 3.125	k W
	Vdc	389	V
	ldc ndc	8.01	Α
	Aufz	zeichnung	g aktiv
	Auswahl		EFF ±ill

- 15. Es ist jederzeit möglich, den aktuellen Stand der 15/05/12 15:35:00 Aufzeichnung zu erfahren, wenn **MENU** gedrückt wird. Es erscheinen damit die folgenden Informationen:
 - > Datum und Uhrzeit des Aufzeichnungsbeginns
 - Eingestelltes Messintervall
 - Anzahl der Aufzeichnungsintervalle Aufzeichnungsbeginn
 - Restliche Aufzeichnungs-Speicherkapazität.

 Drücken Sie die **ESC** Taste zum Verlassen der Bildschirmseite.
- 16. Jetzt kann das SOLAR-02 in die Nähe der PV Strings gebracht werden, um die Einstrahlstärke und Temperatur mit den entsprechenden Fühlern zu messen. Sollte der Abstand zwischen SOLAR-02 und PVCHECK für die Kommunikation über Funkverbindung zu groß werden, blinkt das "

 "Symbol auf dem Display des SOLAR-02 während ca. 30s und verlischt anschließend. Das Messgerät PVCHECK setzt die Suche nach der Funkverbindung noch etwa eine Minute lang fort.
- 17. Die Referenzzelle parallel zur Oberfläche der PV-Module stellen. Für eine korrekte Positionierung, beziehen Sie sich auf das entsprechende Benutzerhandbuch.
- 18. Befestigen Sie den Temperaturfühler mit etwas Klebeband an der Rückseite des PV-Moduls und achten Sie darauf, den Fühler nicht zu berühren, um die Messungen nicht zu verfälschen.
- 19. Warten Sie ein paar Sekunden, damit die Fühler konstante Signale liefern und schließen Sie dann den Einstrahlungsfühler an den **PYRA/CELL** Eingang und den Temperaturfühler an den **TEMP** Eingang des SOLAR-02 an.
- 20. Warten Sie bis die "**READY**" Anzeige am SOLAR-02 erscheint und damit meldet, dass das Solar-02 Einstrahlungsdaten erhalten hat, die oberhalb des gewählten Mindestgrenzwertes liegen (siehe § **5.1.5**).
- 21. Wenn "READY" am Display erscheint warten Sie mindestens eine weitere Minute, um brauchbare Aufzeichnungen zu erhalten.
- 22. Trennen Sie Einstrahlungs- und Temperaturfühler vom SOLAR-02 und bringen Sie das Solar-02 in die Nähe des PVCHECKs (max. Abstand 1m).
- 23. Das Hauptgerät PVCHECK muss im Wirkungsgrad-Messmodus **EFF** sein. Sollte kein " **± m** " Blinksymbol zu sehen sein, drücken Sie die Pfeiltaste **▲**, um die Funkverbindungssuche erneut zu aktivieren.
- 24. Drücken Sie die Pfeiltaste ▼ am SOLAR-02, um die Funkverbindung erneut zu aktivieren. Am Hauptgerät wird daraufhin die Meldung "RF Anschluss aktiv" erscheinen.
- 25. Zur Beendung der Prüfung, drücken Sie **GO/STOP** am Gerät und bestätigen Sie mit **ENTER**, dass die Aufzeichnung beendet werden soll.

W/m2

k W

°C

°C

k W

15:35:00

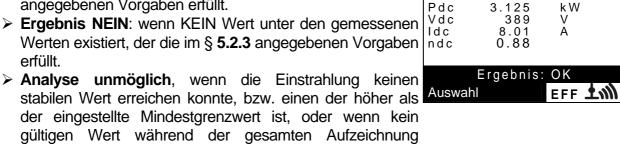
712

45

30

3.500

Irr


Тс

Pnom

- 26. Am Display des SOLAR-02 erscheint "SEND", und zeigt damit an, dass die gemessenen Daten ans Hauptgerät übertragen werden.
- 27. Nach der automatischen Datentransfer-Phase, wird das Gerät | 15/05/12 folgendes anzeigen:
 - > Ergebnis JA: wenn mindestens 1 Wert unter den gemessenen Werten existiert, der die im § 5.2.3 angegebenen Vorgaben erfüllt.

 - > Analyse unmöglich, wenn die Einstrahlung keinen erreicht wurde (nDC > 1.15).
 - ➤ Das Gerät wird kein Ergebnis anzeigen (JA oder NEIN) wenn eine "nDC" Temperaturkorrektur eingestellt worden ist (siehe § 5.2.3).

28. Drücken Sie SAVE, um die Ergebnisse abzuspeichern (siehe § 7.1) oder drücken Sie ESC, dieses Untermenü zu verlassen und zur vorhergehenden Bildschirmseite zurückzukehren.

6.2. MESSUNG DER PV ANLAGENPARAMETER OHNE DATENLOGGER SOLAR-02

Der Wirkungsgradstest "Wirkungsgrad der PV-Anlagen" ohne Verwendung des optionalen Datenloggers SOLAR-02 ermöglicht nur die Bewertung der elektrischen Parameter am Ausgang eines Strings oder eines PV Modulfeldes (Größen: Vdc, Idc und Pdc), die man mit voreingestelltem Messintervall periodisch aufzeichnen kann (siehe § 5.2.1). In diesem Modus werden die Werte der Einstrahlung Irr, die Temperaturen Te, Tc und der **nDC** Wirkungsgradswert nicht bewertet und das PV CHECK liefert keine Ergebnisbewertung.

WARNUNG

- Die höchste zulässige Spannung zwischen den Eingängen P und N ist 1000 VDC. Versuchen Sie nicht, Spannungen zu messen, die die die Grenzwerte, in diesem Handbuch angegebenen überschreiten. Das Überschreiten der Grenzwerte einen könnte elektrischen Schock verursachen und das Messgerät beschädigen.
- Zur Sicherheit des Benutzers müssen bei der Erstellung der Anschlussverbindungen die Leitungsschalter vor und hinter dem DC/AC Wechselrichter geöffnet werden.

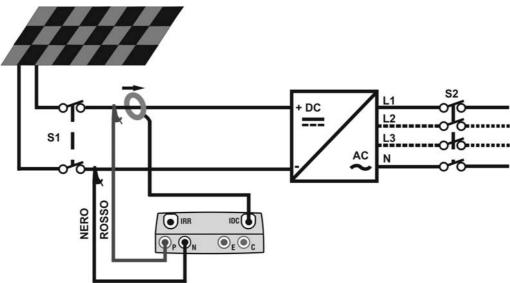


Abb. 5: Anschlussschema des Gerätes für die Messung der Parameter einer PV-Anlage ohne SOLAR-02

- 1. Wählen Sie die Option "NEIN" für den Typ von Remote Unit /Solarmeter beim EFF-Test (siehe § 5.1.4) und stellen Sie den Messbereich der DC-Messzange ein(siehe § 5.2.1), sowie eventuellen Korrekturfaktor der DC-Messzange (siehe § 5.1.6), das Messintervall und die Nennleistung der Anlage (siehe § 5.2.1 und § 5.2.2) ein.
- 2. Zur Sicherheit des Anwenders müssen die Leitungsschalter vor und hinter dem DC/AC Wechselrichter (Inverter) geöffnet werden.
- 3. Verbinden Sie nun die Messgeräte-Eingangsbuchsen P mit dem Pluspol und Anschluss N mit dem Minuspol des zu messenden Strings an. Dabei achten sie auf die Farben, die in der Abb. 5: Anschlussschema des Gerätes für die Messung der Parameter einer PV-Anlage ohne SOLAR-02

4.

5. Verbinden Sie den Ausgangstecker der DC-Strommesszange mit dem **IDC** Eingang des Messgeräts.

WARNUNG

VOR DER ANSCHLUSS DER DC-MESSZANGE MIT DEN LEITERN Schalten Sie die Strommesszange ein, prüfen Sie die LED Anzeige für den Ladezustand der Batterien, wählen Sie den richtigen Stromstärkebereich, drücken Sie die NULL-Taste an der DC-Strommesszange und prüfen Sie am PVCHECK die momentane Nullanzeige des entsprechenden Idc Wertes (Werte bis 0,02 A sind zulässig).

Schließen Sie die DC-Strommesszange am Pluspol des Strings unter Berücksichtigung der Pfeilrichtung an, siehe

Abb. 5: Anschlussschema des Gerätes für die Messung der Parameter einer PV-Anlage ohne SOLAR-02

Bringen Sie die DC-Strommesszange weit genug vom Wechselrichter entfernt an.

 Das Display zeigt nun die erste Bildschirmseite, die die aktuellen elektrischen Parameter am Ausgang des Moduls/Strings enthält.

15/05/12	15:34:26	
Irr Pnom Tc Te Pdc Vdc Idc ndc	3.500 	W/m2 kW °C °C kW V A
S Auswahl	tarten mit	Go EFF

7. Drücken Sie **GO/STOP** am PVCHECK zum Starten des Tests. Im Messgerätedisplay erscheint "**Rec. Warte auf Start...**" (Aufzeichnungsbeginn, bitte warten) bis zur vollen Minute, d.h. Ende der Wartezeit wenn "00" erreicht wird.

8. Wenn "00" nach dem Drücken der **GO/STOP** Taste erreicht wird, beginnt die Messaufzeichnung. Während des Tests zeigt das Messgerät "**Aufzeichnung...**" im Display.

- 9. Es ist jederzeit möglich, den aktuellen Stand der 15/05/12 15:35:00 Aufzeichnung zu erfahren, wenn **MENU** gedrückt wird. Es erscheinen damit die folgenden Informationen:
 - > Datum und Uhrzeit des Aufzeichnungsbeginns
 - Eingestellte Integrationszeit
 - Anzahl der Aufzeichnungsintervalle Aufzeichnungsbeginn
 - > Restliche Aufzeichnungs-Speicherkapazität.

Drücken Sie die **ESC** Taste zum Verlassen de Bildschirmseite.

- 10. Zur Beendung des Tests, drücken Sie **GO/STOP** am Gerät und bestätigen Sie mit **ENTER**, sofern die Aufzeichnung beendet werden soll.
- 11. Drücken Sie **SAVE**, um die Ergebnisse abzuspeichern (siehe § **7.1**) oder drücken Sie **ESC**, um dieses Untermenü zu verlassen und zur vorhergehenden Bildschirmseite zurückzukehren.

6.3. SCHNELLTEST AN PV-MODULEN UND STRINGS (IVCK)

6.3.1. Einführung

Diese Funktion führt eine Reihenfolge von Schnellprüfungen an einem PV-Modul/String durch, und misst dabei:

- ▶ Die Leerlaufspannung Voc und den Kurzschlussstrom Isc gemäß den Vorschriften der Richtlinie IEC/EN62446 (VDE0126-23) mit der Möglichkeit (durch Einsatz der entsprechenden optionalen Adapter/Fühler), auch die Werte der Einstrahlung und der Temperatur der Module zu messen.
- ▶ Den Isolationswiderstand (sofern aktiviert siehe § 5.5.1), nur im STRING Modus möglich (siehe § 6.4.4). Das PV CHECK führt dann automatisch einen internen Kurzschluss zwischen den Eingangsbuchsen P und N, und misst dann zwischen diesem Kurzschlusspunkt und der Eingangsbuchse E.
- ➤ Durchgangstest der Schutzleiter (wenn aktiviert siehe § 5.5.1) mit 200mA zwischen Eingangsbuchsen E und C des Messgerätes.

Die Einstrahlungsmessung kann nur ausgeführt werden, sofern eine der nachfolgenden Bedingungen erfüllt wird:

- Die Referenzzelle ist direkt mit PVCHECK verbunden
- Die Referenzzelle ist mit dem SOLAR-02 verbunden, welches wiederum mittels RF Funkverbindung mit dem PVCHECK verbunden ist

Da die Einstrahlungsmessungen immer in Echtzeit erfolgen, ist es hierbei unmöglich, eine "remote" Aufnahme der Einstrahlungsstärke über das SOLAR-02 zu starten.

Bei den eingestellten Mindestgrenzwerten der Einstrahlung (siehe § 5.1.5) ist zu beachten:

- 0 → Das Gerät prüft das Vorhandensein einer Referenzzelle und die Veränderungen der Einstrahlungstärke sowie die Anzahl der Module <u>nicht</u>. Es zeigt auch keine Fehlermeldungen an wenn es nicht möglich ist, die auf STC berechnete Werte von Voc und Isc zu berechnen. Dieser Modus eignet sich, um Prüfungen an einer Vielzahl von Strings sehr schnell durchführen zu können.
- > 0 (empfohlen >700W/m²) → Das Gerät führt alle für den I-V Test vorgesehenen Prüfungen durch, erkennt alle Bedingungen und die Fehlermeldungen des I-V Tests (falsche Anzahl der Module, Temperatur außerhalb des Bereiches, Vorhandensein der Referenzzelle, Mindesteinstrahlung usw.) und berechnet die Werte von Voc und Isc auf STC Standard. Dieser Modus eignet sich für genauere und aussagekräftigere Prüfungen an den Modulen/Strings.

Das Ergebnis beinhaltet:

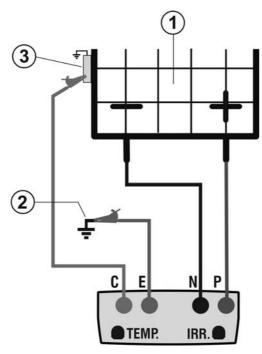
- Kenndaten der Module
- Einstrahlungs- und Temperaturwerte (sofern verfügbar)
- Mittelwerte von Voc und Isc, ermittelt aus dem Mittelwert der 10 letzten OPC Messwerten der abgespeicherten Messungen. Sofern die Anzahl der abgespeicherten Messungen < 10 ist, werden nur die verfügbaren Messungen herangezogen. Die erste Messung wird noch im Feld "Mittelwerte" ("Average values") keine Werte anzeigen, da keine vorherigen Messungen vorliegen, aus denen ein Mittelwert berechnet werden könnte.
- Die Werte von Voc und Isc gemessen unter OPC (Operating Conditions) sowie jegliche Teilergebnisse (sofern STC-Werte nicht vorliegen), die durch Vergleich mit den Mittelwerten ermittelt wurden.
- Die Werte von Voc und Isc gemessen unter STC (sofern verfügbar) sowie alle Teilergebnisse die durch Vergleich mit den berechneten STC und den Nennwerten (hinterlegt in der DB Moduldatenbank) ermittelt wurden.

- Das Testergebnis (OK(NO). Das Testergebnis wird aus den Einzelergebnissen ermittelt:
 - > Basierend auf den Einzelergebnissen unter STC (sofern diese verfügbar sind)
 - ➤ Basierend auf den Einzelergebnissen unter OPC (sofern STC Werte nicht verfügbar sind)

Das Gerät wird kein Endergebnis anzeigen, sofern keine Einzelergebnisse verfügbar sind.

6.3.2. Schnelltest IVCK ohne Einstrahlungsmessung

WARNUNG



- Die höchste zulässige Spannung zwischen den Eingängen P, N und C ist 1000 VDC. Versuchen Sie nicht, Spannungen zu messen, die die Grenzwerte, die in diesem Handbuch angegebenen werden, überschreiten.
- Der maximale, mit dem Messgerät messbare Strom ist 10A. Messen Sie möglichst keine parallel geschalteten PV-Module.
- Messen Sie keine PV Module oder Strings, die noch am DC/AC Leitungsschalter angeschlossen sind.
- 1. Schalten Sie das Messgerät mit der **ON/OFF** Taste ein.
- 2. Stellen Sie sicher, dass das SOLAR-02 nicht ausgewählt wurde (siehe § **5.1.4** Option NEIN)
- 3. Überprüfen Sie, ob der im Abschnitt "Einstrahlung" eingestellte Mindestgrenzwert für die Einstrahlungsstärke auf **0** eingestellt ist. (siehe § **5.1.5**)
- Mit den Pfeiltasten (▲,▼) stellen Sie den Cursor auf IVCK und bestätigen Sie mit ENTER. Das Gerät zeigt die nebenstehend abgebildete Bildschirmseite: Die Bedeutung der Parameter ist die folgende:
 - ➤ **Modul** → Typ vom zu messenden Modul
 - ➤ Vdc → Spannungswert am Ausgang des Moduls/Strings, in Echtzeit gemessen
 - ➤ Irr → Einstrahlungswert, in Echtzeit gemessen
 - ➤ **Tc** → Temperaturwert des Moduls (siehe § 5.5.1)
 - ➤ Voc, Isc → Anzeige des Ergebnisses OK/NEIN der Messung von Voc und Isc
 - ➤ Ri() → Die Angabe in Klammern kann NEIN/Prüfspannung sein (siehe § 5.5.1). Der Wert von Ri gibt den Isolationswiderstand an
 - ➤ Rpe() → Die Angabe in Klammern kann NEIN, Cal oder NoCal sein (siehe § 5.5.1). Der Wert von Rpe gibt das Ergebnis des Durchgangstests an
- 3. Drücken Sie ENTER, wählen Sie "Einstellungen" und bestätigen Sie erneut mit ENTER. Stellen Sie das Gerät wie im § 5.5.1 angegeben ein.
- 4. Wenn nötig, drücken Sie **ENTER**, wählen Sie "**Reset AVG**" und bestätigen Sie erneut mit **ENTER**. Führen Sie eventuell die Operation durch, wie im § 6.3.4 beschrieben.
- 5. Wenn nötig, drücken Sie **ENTER**, wählen Sie "**Kalibration der Leitungen**" und bestätigen Sie erneut mit **ENTER**. Führen Sie eventuell die Operation durch, wie im § 6.5.2 beschrieben.
- 6. Verbinden Sie das Gerät mit dem zu messenden Modul/String und eventuell mit der Erdung des Systems wie in der Abb. 6: Verbindung für IVCK Test ohne Einstrahlungsmessung
- 7. gezeigt.

Beachten Sie, dass der Minuspol am Ausgang des Moduls oder Strings an den Anschluss N und der Pluspol am Ausgang des Moduls oder Strings an den Anschluss P angeschlossen werden muss.

15/05/12	15:34:26	6
Modul	: S	SUNPWR318
Vdc	: 0	.0 V
Irr	: -	W/m2
Тc	: -	
Voc, Isc:		
Ri(1000V) =	M Ω
Rpe (Cal) =	Ω
Auswahl		IVCK

LEGENDE:

- E: Grünes Kabel
- C: Blaues Kabel
- P: Rotes Kabel
- N: Schwarzes Kabel
- PV Modul/String
- 2. Haupterdung der Anlage
- 3. Geerdeter Metall-Rahmen der Anlage

Abb. 6: Verbindung für IVCK Test ohne Einstrahlungsmessung

WARNUNG

Nach Drücken der **GO/STOP** Taste können verschiedene Fehlermeldungen erscheinen (siehe § 6.6) ohne dass das Messgerät die Messung startet. Suchen und eliminieren Sie möglichst die Fehlerquellen, bevor Sie die Prüfungen fortsetzen.

9. Drücken Sie **GO/STOP** zum Starten der Messung. Wenn 15/05/12 15:34:26 keine Fehlermeldungen erscheinen, zeigt das Gerät Wdc 5 5 "Messung..." und die Messung der Leerlaufspannung (für Voc Werte zwischen 15V und 1000VDC) zwischen den Tc Anschlüssen P und N und des Kurzschlussstroms (für Isc Voc,Isc: Werte ≤10A) beginnt.

- 10.Am Ende der Messung von Voc und Isc wird die Meldung 15/05/12 15:34:26 "OK" gezeigt, wenn das Ergebnis des Tests positiv ist Vdc : 54 (gemessene Werte innerhalb der am Gerät eingestellten Toleranzbereiche).
- 11.Mit ausgewählter Isolationsmessung setzt das Gerät den Test fort. Dabei hält das Gerät die Anschlüsse P und N im Kurzschluss und misst zwischen diesem Punkt und dem Anschluss E für die notwendige Zeit, um ein stabiles Ergebnis zu erhalten.
- 12.Der Wert des Isolationswiderstands wird im Feld "Ri' angezeigt und die Meldung "OK" erscheint, wenn das Ergebnis des Tests positiv ist (gemessener Wert höher als der am Gerät eingestellte Mindestgrenzwert).

3							
st	Modul	:	Sι	JNP	W R 3	18	
	Vdc	:	54	548.0 V			
en	Irr	:	0		W / m 2	<u> </u>	
	Тс	:	A u	ιtο	°C		
en							
m	Voc,Isc:					OK	
m	Ri(1000V)	=	1 1	6	МΩ	ОК	
es	Rpe (Cal)	=		-	Ω		
ξi"							
	IVI	ess	ung				
วร							
ls	Auswahl			١V	CK		

13.Mit ausgewählter Durchgangsmessung setzt das Gerät 15/05/12 den Test fort. Dabei beendet das Gerät den Kurzschluss Vdc und misst zwischen den Anschlüssen E und C.

14.Der Widerstandswert beim Durchgangstest wird im Feld Tc

"Rpe" angezeigt und die Meldung "OK" erscheint, wenn
das Ergebnis des Tests positiv ist (gemessener Wert
niedriger als der am Gerät eingestellte maximale
Grenzwert).

15.Die Meldung "**Ergebnis OK**" wird dann vom Gerät angezeigt, wenn das Ergebnis aller durchgeführten Tests positiv ist.

rät 15/05/12 15:34:26

ISS Modul : SUNPWR318
Vdc : 548.0 V
Irr : 0 W/m2

Pld Tc : Auto°C

OK

ert
Ale
Ri(1000V) = 116 MΩ OK

Rpe (Cal) = 2.00 Ω OK

rät

Ergebnis OK

Auswahl

- 16.Drücken Sie die Pfeiltaste ▼, um die folgende Bildschirmseite anzuzeigen, die die Werte der Parameter Voc und Isc enthält. Die Bildschirmseite enthält folgende Informationen:
 - > Die gemessene Modulbezeichnung
 - Die Mittelwerte von Voc und Isc unter OPC Bedingungen
 - ➤ Die unter OPC gemessenen Werte von Voc und Isc und das Teilergebnis resultierend aus dem Vergleich mit den Mittelwerten.

•	15/05/12 15:34:	26
	Modul:	SUNPWR210
•	Irr	W/m2
	Tc (AUTO)	°C
	VocMed@OPC IscMed@OPC	647V 5.43A
	Voc@OPC	647V OK
'	Isc@OPC	5.35 A OK
	Voc@STC Isc@STC	V A
		nis OK
	Auswahl	IVCK

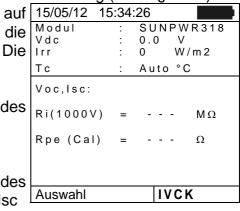
IVCK

Im Allgemeinen:

- Der Gesamtwert der Ergebnisse ergibt sich wie folgt:
 - OK: sofern alle Messergebnisse unter OPC OK sind
 - NEIN: sofern eines der Messergebnisse unter OPC nicht OK ist
- 17. Drücken Sie die Pfeiltaste ▲ um ins vorherige Menü zurückzukehren.
- 18. Drücken Sie **SAVE** zum Abspeichern des Ergebnisses im Speicher des Gerätes (siehe § **7.2**) oder **ESC/MENU** um ohne Messergebnisspeicherung ins Hauptmenü zurück zu gelangen.

WARNUNG

Die Mittelwerte von Voc und Isc werden auf der Ergebnis-Seite angezeigt. Diese Werte beinhalten die Mittelwerte von Voc und Isc unter OPC Bedingungen, ermittelt aus dem Mittelwert der letzten 10 Messungen mit den abgespeicherten Messwerten. Sofern der Benutzer weniger als 10 Messungen oder einen Reset der Mittelwerte durchgeführt hat (siehe § 6.3.4), wird der angezeigte Mittelwert der Messung N+1 aus den N verfügbaren Werten ermittelt.


6.3.3. Schnelltest IVCK mit Einstrahlungsmessung

WARNUNG

- Die höchste zulässige Spannung zwischen den Eingängen P, N und C ist 1000 VDC. Versuchen Sie nicht, Spannungen zu messen, die die Grenzwerte, die in diesem Handbuch angegebenen werden, überschreiten.
- Der größte, mit dem Messgerät messbare Strom ist 10A. Messen Sie möglichst keine parallel geschalteten PV-Module.
- Messen Sie keine PV Module oder Strings, die noch am DC/AC Leitungsschalter angeschlossen sind.
- 1. Schalten Sie das Messgerät mit der **ON/OFF** Taste ein.
- Die Einstrahlungsmessung kann nur ausgeführt werden, sofern eine der nachfolgenden Bedingungen erfüllt wird:
 - ➤ Die Referenzzelle ist direkt mit PVCHECK verbunden
 - Die Referenzzelle ist am SOLAR-02 angeschlossen, welcher mittels RF Funkverbindung mit dem PVCHECK verbunden ist
- 3. Überprüfen Sie, ob das SOLAR-02 auf die verwendete Referenzzelle und Modultyp eingestellt ist (siehe § **5.1.4**).
- 4. Überprüfen Sie den eingestellten Mindestgrenzwert der Einstrahlung (siehe § 5.1.5).
- 5. Mit den Pfeiltasten (▲,▼) stellen Sie den Cursor auf I5/05/12 15:34:26

 IVCK und bestätigen Sie mit ENTER. Das Gerät zeigt die nebenstehend abgebildete Bildschirmseite: Die Bedeutung der Parameter ist die folgende:
 - ➤ **Modul** → Modulbezeichnung /Modell
 - ➤ Vdc → Spannungswert am Ausgang des Moduls/Strings, in Echtzeit gemessen
 - ➤ Irr → Einstrahlungswert, in Echtzeit gemessen
 - ➤ **Tc** → Temperaturwert des Moduls (siehe § 5.5.1)
 - ➤ Voc, Isc → Abschnitt mit der Anzeige des Ergebnisses OK/NEIN der Messung von Voc und Isc
 - ➤ Ri() → Die Angabe in Klammern kann "NEIN" oder "ausgewählte Testspannung" sein (siehe § 5.5.1). Der Wert von Ri gibt den Isolationswiderstand an
 - ➤ Rpe() → Die Angabe in Klammern kann NEIN, Cal oder NoCal sein (siehe § 5.5.1). Der Wert von Rpe gibt das Ergebnis des Durchgangstests an
- 6. Drücken Sie **ENTER**, wählen Sie "**Einstellungen**" und bestätigen Sie erneut mit **ENTER**. Stellen Sie das Gerät wie im § 5.5.1 angegeben ein.

- 7. Wenn nötig, drücken Sie **ENTER**, wählen Sie "**Reset AVG**" und bestätigen Sie erneut mit **ENTER**. Führen Sie die Operation durch, wie im § 6.3.4 beschrieben.
- 8. Wenn nötig, drücken Sie **ENTER**, wählen Sie "**Kalibration der Leitungen**" und bestätigen Sie erneut mit **ENTER**. Führen Sie die Operation durch, wie im § 6.5.2 beschrieben.
- 9. Stellen Sie den mitgelieferten Neigungsmesser M304 auf die PV Modulberfläche. Überprüfen Sie, ob der Schatten des Messstabs "nicht über den Rand des auf dem Neigungsmesser eingezeichneten Kreises hinausragt" (siehe Abb. 7: Positionierung des optionalen Inklinometers M304
- 10. Der Einfallswinkel der Sonnenstrahlen auf die PV Moduloberfläche würde sonst zu flach sein und somit <u>NICHT</u> den normgerechten Testbedingungen der Solarmodul-Hersteller entsprechen. Die Messungen sollten folglich zu einer anderen Tageszeit vorgenommen werden.
- 11. Befestigen Sie den Halter für die Referenzzelle mit den mitgelieferten Schrauben am Rahmen des PV Moduls und stecken Sie die Referenzzelle möglichst mit den Anschlüssen nach unten gerichtet auf den Halter. Die Zelle muss unbedingt exakt parallel zur Lage der PV-Module ausgerichtet werden. Befestigen Sie diese mit den mitgelieferten Schrauben.

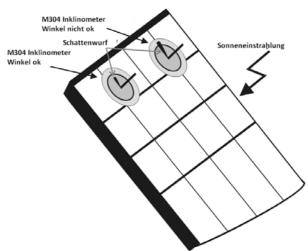
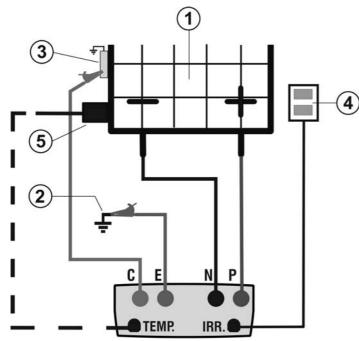
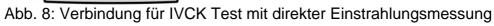


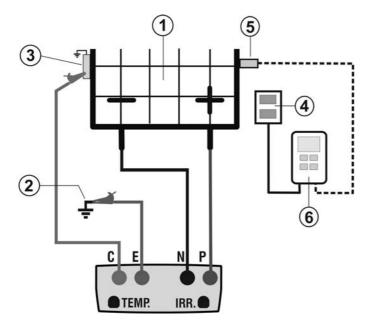
Abb. 7: Positionierung des optionalen Inklinometers M304

- 12. Abb. 8: Verbindung für IVCK Test mit direkter Einstrahlungsmessung
- 13. Abb. 9: Verbindung für IVCK Test mit Einstrahlungsmessung durch SOLAR-02
- 14. Verbinden Sie den Zellenausgang der Referenzzelle der dem Typ des zu messenden Moduls entspricht mit dem Eingang IRR des Gerätes über das mit der Zelle gelieferte Verbindungskabel, oder mit dem PYRA/CELL Eingang des SOLAR-02. (siehe Abb. 8: Verbindung für IVCK Test mit direkter Einstrahlungsmessung
- 15. **Abb. 9: Verbindung für IVCK Test mit** Einstrahlungsmessung durch SOLAR-02 16.
- 17. Falls verwendet, verbinden Sie den Temperatursensor mit dem **TEMP** Eingang des Gerätes und befestigen Sie ihn mit etwas Klebeband auf der Modulrückseite unter einer Zelle, oder verbinden Sie den Temperatursensor mit dem **TEMP** Eingang vom SOLAR-02, (siehe Abb. 8: Verbindung für IVCK Test mit direkter Einstrahlungsmessung
- 18. Abb. 9: Verbindung für IVCK Test mit Einstrahlungsmessung durch SOLAR-02
- 19. Verbinden Sie das Gerät mit dem zu messenden Modul/String und eventuell mit der Haupterdung des Systems und mit den geerdeten Metallrahmen, wie in der Abb. 8: Verbindung für IVCK Test mit direkter Einstrahlungsmessung


20. Abb. 9: Verbindung für IVCK Test mit Einstrahlungsmessung durch SOLAR-02

21. Beachten Sie, dass der Minuspol am Ausgang des Moduls oder Strings an den Anschluss N und der Pluspol am Ausgang des Moduls oder Strings an den Anschluss P angeschlossen werden muss.


WARNUNG


Bei Verwendung des SOLAR-02 für Einstrahlungsmessungen, stellen Sie sicher, dass die RF Funkverbindung mit der Haupteinheit PVCHECK immer vorhanden ist (Symbol "上\mathbf{1}" leuchtet konstant am Display).

LEGENDE:

- E: Grünes Kabel
- C: Blaues Kabel
- P: Rotes Kabel
- N: Schwarzes Kabel
- 1. PV Modul/String
- 2. Haupterdung der Anlage
- Geerdeter Metallrahmen der Anlage
- 4. Referenzzelle für Einstrahlungsmessung
- 5. Temperatursensor (wenn nötig)

LEGENDE:

- E: Grünes Kabel
- C: Blaues Kabel
- P: Rotes Kabel
- N: Schwarzes Kabel
- 1. PV Modul/String
- 2. Haupterdung der Anlage
- Geerdeter Metallrahmen der Anlage
- 4. Referenzzelle für Einstrahlungsmessung
- 5. Temperatursensor (wenn nötig)
- 6. Datenlogger SOLAR-02

Abb. 9: Verbindung für IVCK Test mit Einstrahlungsmessung durch SOLAR-02

- 14.Der Eingangsbildschirm im **IVCK** Modus zeigt folgende Werte in Echtzeit an:
 - ➤ **Modul** → Modulname/ Modell
 - ➤ Vdc → Spannungswert am Ausgang des angeschlossenen Moduls/Strings
 - ➤ Irr → Einstrahlung (durch direkte Messung oder mittels RF-verbundenem SOLAR-02)
 - ➤ Tc → Modultemperatur (im MAN oder AUX Modus) und entsprechender Messmodus oder "- -" im AUTO-Betrieb
 - Das eventuelle Symbol "1" der RF-Verbindung mit dem SOLAR-02

15/05/12 15	:34	26
Modul	:	SUNPWR318
Vdc	:	548.0 V
Irr	:	856 W/m2
Tc	:	Auto °C
Voc,Isc:		
Ri(1000V)	=	MΩ
Rpe (Cal)	=	Ω
Auswahl		іvск 土 ////

WARNUNG

Nach Drücken der **GO/STOP** Taste können verschiedene Fehlermeldungen erscheinen bevor das Messgerät die Prüfung beginnt. Suchen und eliminieren Sie möglichst die Fehlermeldung, bevor Sie die Messungen fortsetzen.

15.Drücken Sie **GO/STOP** zum Starten der Messung. Wenn keine Fehlermeldungen erscheinen, zeigt das Gerät "**Messung...**" und die Messung der Leerlaufspannung (für Voc Werte zwischen 15V und 1000VDC) zwischen den Anschlüssen P und N und des Kurzschlussstroms (für Isc Werte ≤10A) beginnt.

g.	15/05/12	15:34:2	26		
ät	Modul	:	SU	NPW	R318
	Vdc	:	548	3.0 V	
ür	Irr	:	856	6 W/	m 2
n	Tc	:	Aut	o °C	
C	Voc,Isc:				
	Ri(1000\	/) =	-		$M\Omega$
	Rpe (Ca	I) =			Ω
		Messi	ıng.		
	Auswahl			IVCK	T "

16.Am Ende der Messung von Voc und Isc wird die Meldung 15/05/12

"OK" gezeigt, wenn das Ergebnis des Tests positiv ist Vdc (gemessene Werte innerhalb der am Gerät eingestellten Toleranzbereiche).

17.Mit ausgewählter Isolationsmessung setzt das Gerät den Voc,Isc:
Test fort. Dabei bringt das Gerät die Anschlüsse P und N in Kurzschluss und misst zwischen diesem Punkt und dem Anschluss E für die notwendige Zeit, um ein stabiles Ergebnis zu erhalten.

18.Der Wert des Isolationswiderstands wird im Feld "Ri" angezeigt und die Meldung "OK" erscheint, wenn das Ergebnis des Tests positiv ist (gemessener Wert höher als der am Gerät eingestellte Mindestgrenzwert).

19.Mit ausgewählter Durchgangsmessung setzt das Gerät 15/05/12 den Test fort. Dabei öffnet das Gerät den Kurzschluss und Modul vdc misst zwischen den Anschlüssen E und C.

20.Der Widerstandswert beim Durchgangstest wird im Feld Tc "Rpe" angezeigt und die Meldung "OK" erscheint, wenn Vocalsc: das Ergebnis des Tests positiv ist (gemessener Wert

,		Messung	J	
S	Auswahl		IVCK	十៕

t 15/05/12 15:34:26

Modul : SUNPWR318
Vdc : 548.0 V

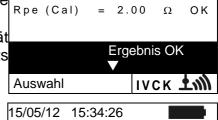
Irr : 856 W/m2

Tc : Auto °C

Voc,Isc: ΟΚ

Ri(1000V) = 116 ΜΩ ΟΚ

SUNPWR210


---W/m2 57°C

ΟK

niedriger als der am Gerät eingestellte maximale Grenzwert).

21.Die Meldung "**Ergebnis OK**" wird dann vom Gerät angezeigt, wenn das Ergebnis aller durchgeführten Tests positiv ist.

Ergebnis

Modul:

Tc (AUTO)

Voc@OPC

lsc@OPC Voc@STC

sc@STC

VocMed@ÓP

scMed@OPC

- 22. Drücken Sie die Pfeiltaste ▼, um die folgende Bildschirmseite anzuzeigen, die die Werte der Parameter Voc und Isc enthält. Die Bildschirmseite enthält folgende Informationen:
 - Modulname / Modell
 - Den Einstrahlungswert
 - > Den Temperaturwert des Moduls
 - Die Mittelwerte von Voc und Isc unter OPC Bedingungen
 - Die gemessenen Werte von Voc und Isc unter OPC Auswahl Bedingungen
 - ➤ Die gemessenen Werte von Voc und Isc auf STC berechnet und das Teilergebnis resultierend aus dem Vergleich mit den Nennwerten.

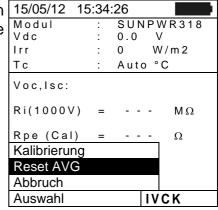
Im Allgemeinen:

Die Nennwerte von Voc und Isc sind die Werte, die in der internen Moduldatenbank des Gerätes hinterlegt wurden (siehe § 5.6).

- Das Gesamtergebnis ergibt sich als:
 - OK: sofern alle Messergebnisse unter STC OK sind
 - NEIN: sofern eines der Messergebnisse unter STC nicht OK ist
- 23. Drücken Sie die Pfeiltaste ▲ um ins vorherige Menü zurückzukehren.
- 24.Drücken Sie **SAVE** zum Abspeichern des Ergebnisses im Speicher des Gerätes (siehe § **7.2**) oder **ESC/MENU**, um ohne Messergebnisspeicherung ins Hauptmenü zurück zu gelangen.

WARNUNG

Die Mittelwerte von Voc und Isc werden auf der Ergebnis-Seite angezeigt. Diese Werte beinhalten die Mittelwerte von Voc und Isc unter OPC Bedingungen, ermittelt aus dem Mittelwert der letzten 10 Messungen mit den abgespeicherten Messwerten. Sofern der Benutzer weniger als 10 Messungen oder einen Reset der Mittelwerte durchgeführt hat (siehe § 6.3.4), wird der angezeigte Mittelwert der Messung N+1 aus den N verfügbaren Werten ermittelt.

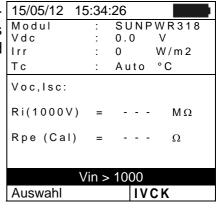

6.3.4. Reset der durchschnittlichen Werte

Sofern die Einstrahlungswerte mit erfasst werden, wird das endgültige Messergebnis aus dem Vergleich der gemessenen Werte mit den vorab abgespeicherten Werten berechnet. Daher erhält der vom Messgerät ermittelte Mittelwert eine hohe Bedeutung.

Im Falle einer neuen Serie von Messungen mit signifikanten Änderungen der Einstrahlung oder der Temperatur ist es empfehlenswert, die Referenzmittelwerte auf Null zu setzen um eine Neuberechnung auf Grundlage der neuen Messungen zu erhalten.

Der Reset der Mittelwerte wird wie folgt durchgeführt:

1. Im Modus IVCK, drücken Sie die **ENTER** Taste, wählen Sie "**Reset AVG**" und bestätigen Sie mit **ENTER**, um die bislang ermittelten Mittelwerte auf Null zu setzen.


Der Reset der Mittelwerte wird automatisch durchgeführt, sofern einer der folgenden Parameter **verändert** wird:

- PV Modell
- Anzahl der Module im String

Ein Reset der Mittelwerte wird nicht durchgeführt sofern der Benutzer nur den Betriebsmodus wechselt, uns dann zu diesem Modus zurück kehrt.

6.3.4.1. Anomalien beim Test IVCK

 Wenn das Gerät an seinen Anschlüssen P-N, P-E und N-E eine Spannung höher als 1000V ermittelt, führt es keine Messung durch, gibt einen langen Signalton ab und zeigt die Meldung "Vin > 1000" an.

2. Wenn das Gerät an seinen Anschlüssen P und N eine Spannung niedriger als 15V ermittelt, führt es keine Messung durch, gibt einen langen Signalton ab und zeigt die Meldung "Spannung niedrig" an.

3. Wenn das Gerät an seinen Anschlüssen E und C eine Spannung höher als 10V ermittelt, führt es keine Messung durch, gibt einen langen Signalton ab und zeigt die Meldung "Spannung > Lim" an.

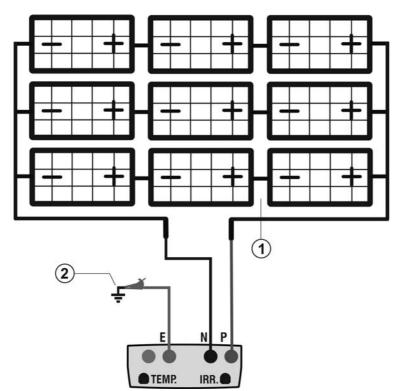
4. Wenn das Gerät einen Isc Strom höher als 10A ermittelt, führt es keine Messung durch, gibt einen langen Signalton ab und zeigt die Meldung "Isc Strom zu hoch" an.

15/05/12	15:34:2	6		
Modul	: 5	SUN	P W I	318
Vdc	: (0.0	V	
Irr	: ()	W /	m 2
Тc	: <i>F</i>	A u t o	°C	
Voc,Isc:				
Ri(1000V) =		-	$M\Omega$
Rpe (Cal)) =		-	Ω
	lsc zu ł	noch		
Auswahl		١٧	CK	

6.4. ISOLATIONSWIDERSTANDSMESSUNG AN PV-MODULEN & STRINGS 6.4.1. Einführung

Zweck dieser Funktion ist die Messung des Isolationswiderstands eines Moduls, Strings, bzw. eines gesamten PV-Feldes gemäß den Vorschriften der VDE 0126-23 (IEC/EN62446). Im Allgemeinen ermittelt das PV CHECK den Isolationswiderstand wie folgt:

- ▶ Betriebsmodus FELD → für die Messung des Isolationswiderstandes eines PV-Feldes (PV-Anlage) bestehend aus einem oder mehreren parallel geschalteten Strings. Das PV CHECK führt die Messung einzeln, erst am Pluspol und dann am Minuspol gegen Erde des PV-Feldes durch.
- ▶ Betriebsmodus TIMER → das Gerät führt die Messung ununterbrochen durch (mit einer maximalen einstellbaren Messdauer von 300s) und nur am Messanschluss "P"; Dabei wird der gemessene Mindestwert des Widerstands am Ende der ausgewählten Dauer angezeigt. Dieser Betriebsmodus kann für die Messung des Isolationswiderstands einer Stringleitung gewählt werden.
- ➢ Betriebsmodus STRING → für die Messung des Isolationswiderstands nur an einzelnen PV Modulen oder Strings. Das Gerät erzeugt automatisch einen internen Kurzschluss zwischen dem Plus- und dem Minuspol, ohne dass es notwendig wird einen externen Kurzschlussschalter für die Herstellung des Kurzschlusses einzusetzen. Das PV CHECK misst dann zwischen diesem Kurzschlusspunkt und der Erdung der Installation (Anschluss E).


6.4.2. Isolationsmessung – Betriebsmodus FELD

- Mit den Pfeiltasten (Ω,▲) stellen Sie den Cursor auf M▼ und bestätigen Sie mit ENTER. Das Gerät zeigt die nebenstehend abgebildete Bildschirmseite:
- Drücken Sie ENTER, wählen Sie "Einstellungen" und ändern Sie eventuell die gewünschten Parameter (siehe § 5.4). Die folgenden Parameter erscheinen im Display:
 - ➤ **Iso Test** → ausgewählte Testspannung (250, 500 oder 1000VDC)
 - Rlim → Mindestgrenzwert für die Isolationsmessung (die VDE 0126-23 legt für die Isolation einen Mindestgrenzwert von 1MΩ bei einer Prüfspannung von 500V oder 1000V fest).
 - ➤ Modus → Betriebsmodus: FELD
 - ➤ Vtest → tatsächlich verwendete Prüfspannung
 - ➤ Ri (+) → Messung des Isolationswiderstands zwischen dem Pluspol des PV Felds und der Erdung
 - ➤ Ri (-) → Messung des Isolationswiderstands zwischen dem Minuspol des PV Felds und der Erdung

Erd	dung
Erdung de	Sie das Gerät mit dem zu messenden PV Feld und mit der Haupt-Potential es Systems, wie in der Abb. 10: Verbindung des Gerätes für Isolationsmessung -
Betriebsm	odus FELD

Beachten Sie, dass der Minuspol am Ausgang des PV Felds an den Anschluss N und der Pluspol am Ausgang des PV Felds an den Anschluss P angeschlossen werden muss.

LEGENDE:

E: Grünes KabelP: Rotes KabelN: Schwarzes Kabel

- 1. Ungeerdetes PV Feld
- 2. Haupterdung der Anlage

Abb. 10: Verbindung des Gerätes für Isolationsmessung - Betriebsmodus FELD

WARNUNG

Nach Drücken der **GO/STOP** Taste können verschiedene Fehlermeldungen erscheinen (siehe § 6.6) ohne dass das Messgerät die Prüfung beginnt. Suchen und eliminieren Sie möglichst die Fehlermeldung, bevor Sie die Messungen fortsetzen.

4. Drücken Sie **GO/STOP** zum Starten der Messung. Wenn keine Fehlermeldungen auftreten, zeigt das Gerät die Meldung "**Messung...**", wie in der nebenstehend abgebildeten Bildschirmseite gezeigt.

15/05/12	15:34:26	
Test Iso Rlim Modus	: 1000 : 1.0 : Feld	V M Ω
Vtest	= 1020	V
Ri (+)	=	$M\Omega$
Ri (-)	=	$M\Omega$
	Messung	
Auswahl	M	Ω

- 5. Am Ende der Messung (mit einer festen Prüfdauer von 10sec) liefert das Gerät die Werte Ri (+) und Ri (-), d.h. den Isolationswiderstand des Plus- und des Minuspols des zu messenden PV-Felds. Wenn beide Ergebnisse den eingestellten Mindestgrenzwert überschreiten, zeigt das Gerät die Meldung "Ergebnis OK". Anderenfalls erscheint im Display die Meldung "Ergebnis NEIN", wie in der nebenstehend abgebildeten Bildschirmseite gezeigt.
- Drücken Sie SAVE zum Abspeichern des Ergebnisses im Speicher des Gerätes (siehe § 7.2) oder ESC/MENU, um ohne Messergebnisspeicherung ins Hauptmenü zurück zu gelangen.

15/05/12	15:34:26	
Test Iso Rlim Modus	: 100 : 1.0	ΜΩ
Vtest	= 10	20 V
Ri (+)	= 0.	75 MΩ
Ri (-)	= 10	0.0 MΩ
	Ergebnis: I	VO
Auswahl		MΩ

6.4.3. Isolationsmessung – Betriebsmodus TIMER

- Mit den Pfeiltasten (,▼▲) stellen Sie den Cursor auf MΩ und bestätigen Sie mit ENTER. Das Gerät zeigt die nebenstehend abgebildete Bildschirmseite.
- 2. Drücken Sie **ENTER**, wählen Sie "**Einstellungen**" und ändern Sie eventuell die gewünschten Parameter (siehe § 5.4). Die folgenden Parameter erscheinen im Display:
 - ➤ **Iso Test** → ausgewählte Testspannung (250, 500 oder 1000VDC)
 - ightharpoonupRlim ightharpoonupMindestgrenzwert für die Isolationsmessung (die VDE 0126-23 stellt für die Isolation einen Mindestgrenzwert von **1M**Ω bei Prüfspannungen von 500V oder 1000V fest).
 - ➤ Modus → Betriebsmodus: TIMER
 - > Vtest -> tatsächlich verwendete Prüfspannung
 - ➤ Rimin → Kleinster Isolationswiderstand zwischen dem Pluspol und der Erdung, der während der ganzen Messung ermittelt wurde
 - ➤ Prüfdauer → Dauer der Prüfung, die im Bereich 1 bis 300s eingestellt werden kann

Verbinden Sie das PV CHECK mit dem zu messenden PV Modul/String und danach mit eventuellen ungeerdeten Metall-Rahmen und mit dem Haupterdungspotential des Systems

Abb. 11: Anschluss des Gerätes für Isolationsmessung - Betriebsmodus TIMER

Beachten Sie, dass der Pluspol am Ausgang des PV Moduls oder Strings an den Anschluss P angeschlossen werden müssen.

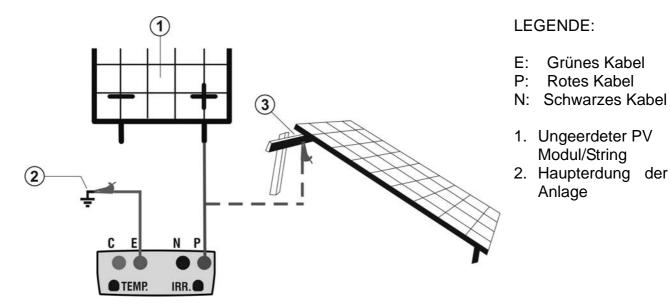
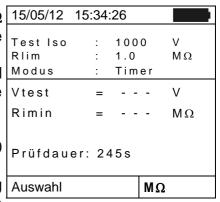



Abb. 11: Anschluss des Gerätes für Isolationsmessung - Betriebsmodus TIMER

WARNUNG

Nach Drücken der **GO/STOP** Taste können diverse Fehlermeldungen erscheinen (siehe § 6.6) so dass das Messgerät die Prüfung nicht beginnt. Suchen und eliminieren Sie möglichst die Fehlermeldung, bevor Sie die Prüfarbeiten fortsetzen.

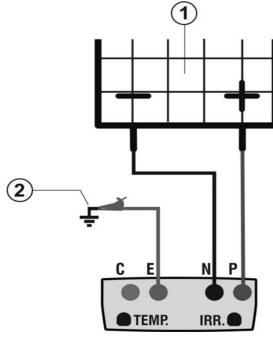
4. Drücken Sie **GO/STOP** zum Starten der Messung. Wenn keine Fehlermeldungen auftreten, zeigt das Gerät die Meldung "**Messung...**", wie in der nebenstehend abgebildeten Bildschirmseite gezeigt.

15/05/12 1	5:34	:26	
Test Iso Rlim Modus	: :	1000 1.0 Timer	V MΩ
Vtest	=	1020	٧
Rimin	=		$M\Omega$
Messdaue			
N	/less	ung	
Auswahl		MΩ	2

5. Am Ende der Messung liefert das Gerät den Wert Rimin, d.h. den kleinsten Wert des Isolationswiderstands des gemessenen PV Moduls/Strings der während der ganzen Messzeit ununterbrochen ermittelt wurde. Wenn das Ergebnis den eingestellten Mindestgrenzwert überschreitet, zeigt das Gerät die Meldung "Ergebnis OK". Anderenfalls erscheint im Display die Meldung "Ergebnis NEIN", wie in der nebenstehend abgebildeten Bildschirmseite angezeigt.

15/05/12	15:34:26		
Test Iso	: 10	0 0	V
Rlim	: 1.	0	$M \Omega$
Modo	: Ti	mer	
Vtest	= 10	20	V
Rimin	= 1	00	$M\Omega$
Messdau	er: 245	S	
	Ergebnis:	OK	
Auswahl		МΩ	

6. Drücken Sie **SAVE** zum Abspeichern des Ergebnisses im Speicher des Gerätes (siehe § **7.2**) oder **ESC/MENU**, um ohne Messergebnisspeicherung ins Hauptmenü zurück zu gelangen.


6.4.4. Isolationsmessung – Betriebsmodus STRING

- Mit den Pfeiltasten (▲▼) stellen Sie den Cursor auf MΩ, und bestätigen Sie mit ENTER. Das Gerät zeigt die nebenstehend abgebildete Bildschirmseite.
- 2. Drücken Sie **ENTER**, wählen Sie "**Einstellungen**" und ändern Sie eventuell die gewünschten Parameter (siehe § 5.4). Die folgenden Parameter erscheinen im Display:
 - ➤ **Iso Test** → ausgewählte Prüfspannung (250, 500 oder 1000VDC)
 - Rlim → Mindestgrenzwert für die Isolationsmessung (die VDE0126-23 legt für die Isolation einen Mindestgrenzwert von 1MΩ bei Prüfspannungen von 500V oder 1000V fest).
 - ➤ Modus → Betriebsmodus: STRING
 - ➤ Vtest → tatsächlich verwendete Prüfspannung
 - ➤ Ri(+) → Kleinster-Isolationswiderstand zwischen dem Pluspol und der Erdung, der während der Messung ermittelt wurde

15/05/12	15:34:26	
Test Iso	: 1000	V
Rlim	: 1.0	$M \Omega$
Modus	: String	
Vtest	=	V
Ri(+)	=	$M\Omega$
Auswahl	M	Ω

3. Verbinden Sie das Gerät mit dem zu messenden PV Modul/String und mit der Erdung des Systems, wie in Abbildung 13 gezeigt. Beachten Sie, dass der Minuspol am Ausgang des PV Moduls an den Anschluss N und der Pluspol am Ausgang des PV Moduls an den Anschluss P angeschlossen werden muss.

LEGENDE:

E: Grünes KabelP: Rotes KabelN: Schwarzes Kabel

- 1. PV Modul/String
- 2. Haupterdung der Anlage

Abb. 12: Verbindung des Gerätes für Isolationsmessung - Betriebsmodus STRING

WARNUNG

Nach Drücken der **GO/STOP** Taste können diverse Fehlermeldungen erscheinen (siehe § 6.6) so dass das Messgerät die Prüfung nicht beginnt. Suchen und eliminieren Sie möglichst die Fehlermeldung, bevor Sie die Prüfarbeiten fortsetzen.

4. Drücken Sie **GO/STOP** zum Starten der Messung. Wenn keine Fehlermeldungen auftreten, zeigt das Gerät die Meldung "**Messung...**", wie in der nebenstehend abgebildeten Bildschirmseite gezeigt.

15/05/12	15:34:26	
Test Iso Rlim Modus	: 100 : 1.0 : Stri	МΩ
Vtest	= 102	0 V
Ri(+)	=	- ΜΩ
	Messung	
Auswahl		$M\Omega$

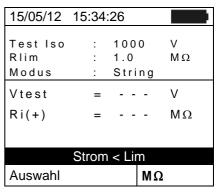
5. Am Ende der Messung liefert das Gerät den minimalen Ri Wert, d.h. den kleinsten Isolationswiderstands des gemessenden PV Moduls/Strings der während der ganzen Messzeit ununterbrochen gemessen wwurde. Wenn das Ergebnis den eingestellten Mindestgrenzwert überschreitet, zeigt das Gerät die Meldung "Ergebnis OK". Anderenfalls erscheint im Display die Meldung "Ergebnis NEIN", wie in der nebenstehend abgebildeten Bildschirmseite gezeigt.

) -	Test Iso		1000	V	
n	Rlim	:	1.0	MΩ	
S	Modus	:	String		
rt	Vtest	=	1020	V	
S	Ri(+)	=	100	$M\Omega$	
g n					
n					
	E	rgebr	nis: OK		
n	Auswahl		M	2	

6. Drücken Sie SAVE zum Abspeichern des Ergebnisses im

Speicher des Gerätes (siehe § 7.2) oder ESC/MENU, um ohne Messergebnisspeicherung ins Hauptmenü zurück zu gelangen.

6.4.4.1. Anomalien


1. In allen Betriebzuständen gilt:Wenn das Gerät an seinen Anschlüssen P-N, P-E und N-E eine Spannung höher als 1000V ermittelt, führt es keine Messung durch, gibt einen langen Signalton ab und zeigt die Meldung "Vin > 1000" an.

15/05/12	15:34:	26	
Test Iso Rlim Modus	:	1000 1.0 String	V M Ω
Vtest	=		V
Ri(+)	=		$M\Omega$
	Vin >	1000	_
Auswahl		MΩ	2

2. Wenn Im STRING Betriebsmodus, das Gerät einen Isc Strom höher als 10A ermittelt, führt es keine Messung durch, gibt einen langen Signalton ab und zeigt die Meldung "Isc Strom zu hoch" an.

15/05/12	15:34:26	
Test Iso Rlim Modus	: 100 : 1.0 : Stri	$M \Omega$
Vtest	=	- V
Ri(+)	=	- MΩ
St	rom Isc zu h	noch
Auswahl		ΜΩ

3. Wenn im STRING Betriebsmodus, das Gerät einen Strom < 0.2A zwischen den Anschlüssen P und N ermittelt, führt es keine Messung durch, gibt einen langen Signalton ab und zeigt die Meldung "Strom < Lim" an.

 Wenn im STRING Betriebsmodus, das Gerät eine Spannung < 15V zwischen den Anschlüssen P und N ermittelt, führt es keine Messung durch und zeigt die Meldung "Spannung niedrig" an.

15/05/12	15:34:26	
Test Iso	: 10	00 V
Rlim	: 1.	Ω M Ω
Modus	: St	ring
Vtest	= -	V
Ri(+)	= -	MΩ
Spa	annung zu	gering
Auswahl	·	ΜΩ

6.5. DURCHGANGSTEST AN PV-MODULEN/STRINGS/FELDERN (LOW Ω)

6.5.1. Einführung

gezeigt.

Zweck dieser Messung ist die Durchführung eines Durchgangstests (Niederohmmessung) an den Schutz- und Potentialausgleichsleitern, sofern angebracht. Die Messung muss mit einem Prüfstrom > 200mA gemäß den Vorschriften der VDE0126-23, IEC/EN62446 und IEC/EN60364 durchgeführt werden. Die VDE0126-23 gibt als Grenzwert für den max.. zulässigen Widerstand den Wert von 1Ω vor.

6.5.2. Kalibration der Messleitungen

 Mit den Pfeiltasten (▼,▲) stellen Sie den Cursor auf LOWΩ und bestätigen Sie mit ENTER. Das Gerät zeigt die nebenstehend abgebildete Bildschirmseite: Schließen Sie die Messleitungen an, wie in der Abb. 13: Kompensation des Widerstands der Messleitungen

f	15/05/12	15:34:26		
t	Rpe max Rcal	: 1 : - ·		Ω
	Rpe	=	- <u>9</u>	Ω
	Itest	=	- r	m A
	Auswahl		LOW	Ω

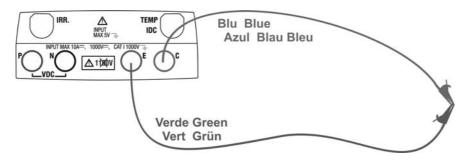


Abb. 13: Kompensation des Widerstands der Messleitungen

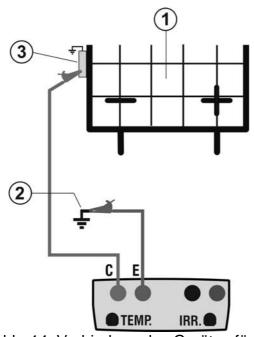
- Drücken Sie die ENTER Taste. Das Messgerät zeigt folgende Auswahlmöglichkeiten: Einstellungen und Kalibration der Leitungen
- Mit den Pfeiltasten (▲,▼) wählen Sie "Kalibration der Leitungen" und bestätigen Sie mit ENTER.

t	15/05/12	15:34	:26	
ł	5.5.5		4.0	
-	RPE max	:	1.0	Ω
	Rcal	:		Ω
•				
'	Rpe	=		Ω
	1+00+			m A
	ltest	=		III A
	Kalibration			
	Einstellur			
		ıy		
	Auswahl		LO	$\mathbf{W}\Omega$

- 4. Drücken Sie **GO/STOP** zum Starten der Kalibration. Die Meldung "Messung..." wird im Display angezeigt.
- 5. Am Ende des Kompensationsvorganges, falls der gemessene Widerstandswert niedriger als 2Ω ist, gibt das Gerät einen doppelten Signalton ab, um das positive Ergebnis der Prüfung bekannt zu geben und zeigt die folgende Bildschirmseite:

15/05/12 1	15:34	:26	
		4.0)
RPE max	:	1.0	Ω
Rcal	:		Ω
Rpe	=		Ω
Itest	=		m A
	_		
l N	ess	ung	
Auswahl		LO	Ω W
			i e

- Der Wert des kompensierten Widerstands der Leitungen, der von allen folgenden Durchgangsmessungen abgezogen wird, wird neben "Rcal" angezeigt, die Meldung "Kalibration OK" wird im Display angezeigt.
- 7. Um den kompensierten Widerstandswert zu löschen, führen Sie ein neues Kompensationsverfahren durch, mit einem Widertand höher als 2Ω wie z.B. mit offenen Leitungen. Der im Display in Zeile Rcal angezeigte Wert wird auf Null gestellt.


,	15/05/12	15:34	:26	
)	RPE max Rcal	:	1.0	Ω Ω
)	Rpe	=		Ω
ì	Itest	=		m A
r I				
	Kali	brie	rung Ol	K
	Auswahl		LO	WΩ
	Auswahl		LO	WΩ

6.5.3. Durchgangstest

- Mit den Pfeiltasten (▼,▲) stellen Sie den Cursor auf LOWΩ und bestätigen Sie mit ENTER. Das Gerät zeigt die nebenstehend abgebildete Bildschirmseite:
- 2. Drücken Sie **ENTER**, wählen Sie "**Einstellungen**" und ändern Sie eventuell die gewünschten Parameter (siehe § 5.3.1). Die folgenden Parameter erscheinen im Display:
 - ightharpoonup RPE max ightharpoonup Maximale Grenze für den Durchgangstest, die im Bereich $1\Omega \div 5\Omega$ in Schritten von 1Ω ausgewählt werden kann (die VDE0126-23 gibt als Grenzwert für den max. Widerstand den Wert von 1Ω vor).

15/05/12	15:34:26	
RPE max Rcal	: 1.0	Ω
Rpe	=	Ω
Itest	=	m A
Auswahl	L	OWΩ

- ➤ Rcal → Widerstandswert der Messleitungen nach ihrer Kalibration
- ➤ Rpe → Ergebnis des Durchgangstests
- ➤ Itest → tatsächlicher Prüfstrom
- 3. Drücken Sie **ENTER**, wählen Sie "**Kalibration der Leitungen**" aus (siehe § 6.5.2) und führen Sie die Anfangskalibration der Messleitungen durch.
- 4. Verbinden Sie das Gerät mit dem zu messenden PV Modul/String und mit dem Haupt-Erder des Systems, wie in Abb. 14: Verbindung des Gerätes für den Durchgangstest an der PV-Anlage angezeigt.

LEGENDE:

E: Grünes Kabel

C: Blaues Kabel

1. PV Modul/String

2. Haupterdung der Anlage

3. Geerdeter Rahmen der Anlage

Abb. 14: Verbindung des Gerätes für den Durchgangstest an der PV-Anlage

WARNUNG

Nach Drücken der **GO/STOP** Taste können verschiedene Fehlermeldungen erscheinen (siehe § 6.6) ohne dass das Messgerät die Prüfung beginnt. Suchen und eliminieren Sie möglichst die Fehlermeldung, bevor Sie die Prüfarbeiten fortsetzen.

 Drücken Sie GO/STOP zum Starten der Messung. Wenn keine Fehlermeldungen auftreten, zeigt das Gerät die Meldung "Messung…", wie in der nebenstehend abgebildeten Bildschirmseite gezeigt.

1	15/05/12	15:34:	26		
k e	RPE max Rcal	:	1 	. 0 -	Ω Ω
	Rpe	=		-	Ω
	Itest	=		-	m A
		Messu	ına		
	Auswahl		9		WΩ

6. Am Ende der Messung liefert das PV CHECK den Widerstandswert des Durchgangstest. Wenn das Ergebnis den eingestellten maximalen Grenzwert unterschreitet, zeigt das Gerät die Meldung "Ergebnis JA". Anderenfalls erscheint im Display die Meldung "Ergebnis NEIN", wie in der nebenstehend abgebildeten Bildschirmseite gezeigt.

7. Drücken Sie **SAVE** zum Abspeichern des Ergebnisses im Speicher des Gerätes (siehe § **7.2**) oder **ESC/MENU**, um ohne Messergebnisspeicherung ins Hauptmenü zurück zu gelangen.

15/05/12	15:34:	26			
Rpe max Rcal	:	1.0 0,02-	Ω Ω		
Rpe	=	0.23	Ω		
Itest	=	210	m A		
		. 014			
Ergebnis: OK					
Auswahl	LOWΩ				

6.5.3.1. Anomalien

 Wenn das Gerät an seinen Anschlüssen E und C eine Spannung höher als 10V, erkennt, führt es keine Messung durch, gibt einen langen Signalton ab und zeigt die Meldung "Spannung > Liim" an.

÷	15/05/12	15:34:20	ô		
t	RPE max Rcal	: : -	1	. 0 -	Ω Ω
	Rpe	= -	-	-	Ω
	Itest	= -	-	-	m A
	Sap	nnung	>	Li	m
	Auswahl			LC	ΩWΩ

2. Wenn das Gerät feststellt, dass der kalibrierte Widerstand höher als der vom Gerät gemessene Widerstand ist, gibt es einen langen Signalton ab und zeigt die Meldung: "Kalibration nicht OK" an.

15/05/12	15:34	:26	
RPE max	:	1.0	Ω
Rcal	:		Ω
Rpe	=		Ω
Itest	=		m A
Kalibr	atioı	n nicht	OK
Auswahl		LO	WΩ
L.			

3. Wenn das Gerät an seinen Anschlüssen einen Widerstand höher als 2Ω , gibt es einen langen Signalton ab, stellt den kompensierten Wert auf Null und zeigt die Meldung "Reset der Kalibration" an.

ì	15/05/12	15:34:	26		
,	RPE max Rcal	:	1 0.0	. 0) 0	Ω
	Rpe	=		-	Ω
	Itest	=		-	m A
	Kali	bratio	on F	Rese	t
	Auswahl			LO	WΩ

6.6. LISTE DER DISPLAY-MELDUNGEN

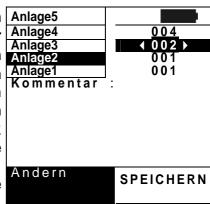
MELDUNG	BESCHREIBUNG
Funktion nicht verfügbar	Die ausgewählte Funktion/Eigenschaft ist nicht verfügbar
Daten nicht gespeichert	Das Gerät war nicht in der Lage, die Daten abzuspeichern
Falsches Datum	Datum- und Uhrzeiteinstellung berichtigen
Fehler RADIO Transmission	Das Gerät kommuniziert nicht via RF mit externen Einheiten
SOLAR-02: falsches Firmware	SOLAR-02 Firmware aktualisieren.
Falsches Firmware	FW des Gerät nicht geeignet. Firmware aktualisieren.
Fehler 4: Service kontaktieren	Interner Fehler des Geräts
Datenbank voll	Die Datenbank kann nur 30 Modulparameterwerte speichern.
Modul schon vorhanden	Name des Moduls schon in der Datenbank vorhanden
Speicher voll	Speicher des Geräts voll beim Drücken der GO-Taste
Fehler: Vmpp >= Voc	Überprüfen Sie Ihre Moduldateneingabe mit dem Datenblatt
Fehler: Impp >= Isc	Überprüfen Sie Ihre Moduldateneingabe mit dem Datenblatt
Fehler: Vmpp * Impp >= Pmax	Überprüfen Sie Ihre Moduldateneingabe mit dem Datenblatt
Fehler: Alpha zu hoch	Überprüfen Sie Ihre Moduldateneingabe mit dem Datenblatt
Fehler: Beta zu hoch	Überprüfen Sie Ihre Moduldateneingabe mit dem Datenblatt
Fehler: Gamma zu hoch	Überprüfen Sie Ihre Moduldateneingabe mit dem Datenblatt
Fehler: Tol. zu hoch	Überprüfen Sie Ihre Moduldateneingabe mit dem Datenblatt
	Datenübertragung vom SOLAR-02 aktiv, bitte warten auf Ergebnis
Daten-Analyse abwarten	vom PV-Wirkungsgradstest
Fehler bei Datenübertragung	Service kontaktieren
Speicherfehler	Fehler beim Zugriff auf Messgerät-Datenspeicher
Datenlogger nicht gefunden	Das Gerät findet kein Verbindung mit dem SOLAR-02
Analyse kann nicht ausgeführt werden	SOLAR-02 Datenanalyseproblem, bitte Einstellungen prüfen.
Daten nicht verfügbar	Allgemeiner Fehler. Test wiederholen.
Negative Spannung	Die Polarität der Eingangsanschlüsse des Gerätes überprüfen
	Die Spannung zwischen den Eingangsanschlüssen P und N
Niedrige Spannung	überprüfen
Vin > 1000	Spannung zwischen den Eingangsanschlüssen > 1000V
Falsche Anzahl der Module.	Eingegebene Modulanzahl passt nicht mit der gemessenen
Fortsetzen?	Leerlaufspannung Voc zusammen
Referenzzellentemperatur ausserhalb	Gemessene Referenz-Zellentemperatur zu hoch
des Bereiches	Comocomo Noronal Zonomomporatar Za noon
Zellentemperatur nicht gemessen	Messung der Modulzelle nicht durchgeführt
(ENTER/ESC)	
Batterie erschöpft	Batterien schwach, bitte wechseln
Bitte warten auf Abkühlung	Gerät überhitzt. Bitte warten vor neuer Messung
Einstrahlung zu niedrig	Einstrahlung niedriger als der gewählte Mindestgrenzwert
NTC Fehler	Interner NTC defekt. Service kontaktieren
Isc Strom zu hoch	Gemessener Isc Strom > 10A
Strom < Lim	Gemessener Strom zwischen P und N zu gering
EEPROM Fehler: Service	Interner Fehler des Geräts
kontaktieren	
FRAM Fehler: Service kontaktieren	Interner Fehler des Geräts
RTC Fehler: Service kontaktieren	Interner Fehler des Geräts
RADIO Fehler: Service kontaktieren	Interner Fehler des Geräts
FLASH Fehler: Service kontaktieren	Interner Fehler des Geräts
IO EXP Fehler: Service kontaktieren	Interner Fehler des Geräts
Spannung > Grenze	Spannung zwischen den Eingangsanschlüssen E und C > 10V
Kennung schon vergeben	Die einer Messung zugewiesene numerische Kennung ändern
Isc Strom < Lim	Isc Strom niedriger als die Messgrenze. Service kontaktieren
Vorsicht: interner Kurzschluss	Service kontaktieren
Vorsicht: defekte Schmelzsicherung	Service kontaktieren
Reset der Kalibration. ENTER drücken.	Widerstandswert der Eingangsmessleitungen > 2Ω
urucken.	
Kalibration nicht OK	Wert des kalibrierten Widerstands > Wert des gemessenen
	Widerstands

Fehler: Messung des Isc Offset-Werts	Interner Fehler des Geräts	
Rcal > gemessener R	Wert des kalibrierten Widerstands > Wert des gemessenen Widerstands	
Vorsicht, AC-Spannung an P-N Eingängen	AC-Eingangsspannung vorhanden	
Die Entladung des Kondensators abwarten	Die Entladung am messenden Prüfobjektes nach der Isolationsmessung abwarten	

7. ABSPEICHERUNG DER ERGEBNISSE

Das Gerät ermöglicht die Speicherung bis zu 999 Messergebnissen. Die gespeicherten Daten können jederzeit am Display dargestellt und gelöscht werden. Den gespeicherten Daten können eine Anlagennummer, eine Stringnummer, eine Modulnummer und ein Textkommentar zugeordnet werden (max. 13 Zeichen).

7.1. ABSPEICHERUNG DER WIRKUNGSGRADS-MESSERGEBNISSE


- 1. Drücken Sie **SAVE** wenn ein Prüfergebnis im Display angezeigt wird. Die nebenstehend abgebildete Bildschirmseite mit virtueller Tastatur wird angezeigt.
- Mit den Pfeiltasten (▲,▼) und (◀, ▶) können Sie eine Kurzbeschreibung (max 13 Zeichen) für die durchgeführte Prüfung eingeben.
- Drücken Sie SAVE zum Abspeichern des Prüfergebnisses oder drücken Sie ESC/MENU um ohne Messwertabspeicherung ins Hauptmenü zurück zu gelangen.

y	15/05/12	15:34:26	
e	T c T e	712 3.500 45 30	W/m2 kW °C °C
Э	Pdc	3.125	kW
_	ANLAG	TASTATU E RO <mark>S</mark> SI	
S	IABCDE	FGHIJ	KLMNOP
) J	QRSTL	JVWXYZ 9 SPACE	
	N /lit	SAVE speic	horn
	IVIIL	SAVE Spelc	nem

7.2. ABSPEICHERUNG DER MESSUNGEN VON IVCK, M Ω UND LOW Ω

- 1. Drücken Sie **SAVE** wenn ein Prüfergebnis im Display angezeigt wird. Die nebenstehend abgebildete Bildschirmseite wird angezeigt, die die folgenden Elemente enthält:
 - ➤ Die erste freie Speicherstelle ("MESSUNG")
 - Die numerische Kennung "Anlage1"
 - ➤ Die numerische Kennung "String1"
 - Die numerische Kennung "Modul1"
 - Kommentarfeld wo der Bediener eine Kurzbeschreibung (max 13 Zeichen) für die Anlage eingeben kann.
- 2. Allen 3 Kennungen "Anlage", "String" und Modul" können personalisierte Texte zugeordnet werden, unter der Voraussetzung, dass der Text nicht mit einer anderen Kennung schon endgültig assoziiert worden ist (in diesem Fall erscheint die Meldung "Textkennung schon assoziiert" im Display). Wählen Sie eine der 3 Optionen mit den Pfeiltasten (◀, ▶) und drücken Sie die ENTER Taste. Die nebenstehend abgebildete Bildschirmseite (z.B.: für "Anlage") wird vor Gerät angezeigt.
- 3. Wählen Sie eine der 5 verfügbaren Optionen für die

Kennungen mit den Pfeiltasten (▲,▼) und bestätigen Sie mit der **ENTER** Taste. Es stehen folgende Default-Werte zur Verfügung:

- → "Anlage" → Anlage1, Anlage2, Anlage3, Anlage4,
 Anlage5
- → "String" → String1, String2, String3, String4,
 String5
- ➤ "Modul" → Modul1, Modul2, Modul3, Modul4, Modul5
- Den Vorgabe-Namen der Kennungen "Anlage", "String" und Modul" können auch im Voraus den Messungen zugeordnet werden

_		
' S	olar Power	
Α	nlage Meier	004
' П	aus Borchert	(002)
S	OLAR Konig	001
H	alle 24	001
Α	nlage5 nlage4	
Α	nlage4	
ΙA	nlage3	
ΙA	nlage2	
Α	nlage1	
Ä	ndern	SPEICHE RN

WARNUNG

- Die Vorgabe-Namen der Kennungen "Anlage", "String" und "Modul" können im Voraus vom Benutzer personalisiert werden, unter Verwendung der TopView Software. Sie können über eine PC-Verbindung ins Gerät geladen werden (siehe die On-Line-Hilfe der TopView Software)
- Es möglich, bis zu 5 personalisierte Namen für jede Kennung hinzuzufügen.
- Die Namen der Vorgabe-Kennungen k\u00f6nnen nicht gel\u00f6scht werden. Die L\u00f6schung der personalisierten Namen kann nur die durch TopView Software erfolgen.
- 5. Mit den Pfeiltasten (▲, ▼) und (◀, ▶) kann der Benutzer mit der virtuellen Tastatur im Feld "Kommentar" eine Kurzbeschreibung (max 13 Zeichen) eingeben. Drücken Sie ENTER, um den jeweiligen Buchstaben (oder Zahl) einzutippen.

 15/05/12 15:3

 MESSUNG

 MUSTER

 String UT

 ModulA1

 Kommentar

6. Drücken Sie **SAVE** erneut zum Abspeichern der Daten oder drücken Sie **ESC/MENU** um ohne Messwertabspeicherung ins Hauptmenü zurück zu gelangen.

TYP IST 08/04/2012

MEM - EFF

REG 13/05/2012

*REG 14/05/2012

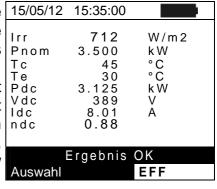
Prüfung

MEM IVCK

003

Löschen

Auswahl

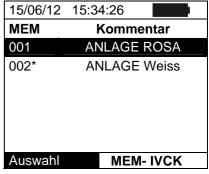

7.3. **MESSERGEBNISE ANZEIGEN**

7.3.1. Displayaufruf der Ergebnisse eines PV-Wirkungsgradstests

- 1. Mit ESC/MENU gehen Sie ins Hauptmenü, wählen Sie 15/05/12 15:34:26 dort "MEM" und bestätigen Sie mit ENTER, um in den MEM Datenspeicher zu gelangen. Die nebenstehend 001 abgebildeten Bildschirmseite erscheint im Display des 002 Gerätes und enthält die Liste der gespeicherten Messungen.
- 2. Mit den Pfeiltasten (▲,▼) und der Pfeiltaste ▶ wählen Sie "Abrufen", dann "Prüfung" und bestätigen Sie mit am Display Abbr **ENTER**, um nur die Testergebnisse darzustellen.
- 3. Mit der Pfeiltaste ▶ können Sie die folgenden Kennungen darstellen:
 - > TYP -> Art der gespeicherten Daten: "REC" für eine Messung mit Ergebnis JA/NEIN; "*REC" wenn die mit SOLAR-02 erfassten Einstrahlungs- und Temperaturwerte nicht im PV CHECK vorhanden sind, und "IST" für die abgespeicherten Momentanwerte im Display.
 - ➤ **DATUM** → Aufzeichnungs-Datum und -Uhrzeit der im Messgerät gespeicherten Daten
 - ➤ **KOMMENTARE** → sind die vom Benutzer während der Abspeicherung eingetragenen Kommentare.
- 4. Drücken Sie "IST", dann "Ansicht" und bestätigen Sie mit **ENTER**. Das Gerät zeigt den folgenden Bildschirm:
- 5. Drücken Sie **ESC/MENU** um ins vorherige Menü zurückzukehren.

į	15/05/12	15:35:00	
	Irr Pnom Tc Te Pdc Vdc Idc ndc	712 3.500 45 30 3.125 389 8.01 0.88	W/m2 kW °C °C kW V A
	Erg Auswahl	ebnis An	alyse EFF

- 6. Drücken Sie "REC", dann "Ansicht" und bestätigen Sie 15/05/12 mit ENTER. Das Gerät zeigt im Display die besten Werte der von der durchgeführten Aufzeichnung und gibt das eventuell das Ergebnis (JA/NEIN) der Prüfung an.
- 7. Wenn Sie "*REC" und dann "Ansicht" wählen und mit ENTER bestätigen, erscheint die Meldung "Analyse nicht möglich", weil die vom SOLAR-02 erfassten Werte noch fehlen. Das Ergebnis dieser Messung ist erst darstellbar. nachdem die Daten vom SOLAR-02 mit der TopView Software auf einen PC übertragen wurden (siehe § 8).



7.3.2. Displayaufruf der Messergebnisse IVCK, $M\Omega$ und $LOW\Omega$

- 1. Mit **ESC/MENU** gehen Sie ins Hauptmenü, wählen Sie dort "**MEM**" und bestätigen Sie mit **ENTER**, um in den Datenspeicher zu gelangen. Die nebenstehend abgebildete Bildschirmseite erscheint im Display des Gerätes und enthält die Liste der gespeicherten Messungen.

 | 15/05/12 15:34:26 | MEM | DATA | DOI | 008/04/2012 10 | 001 | 008/04/2012 11 | 003 | 15/05/12 |
- Mit den Pfeiltasten (▲,▼) und der Pfeiltaste ► wählen Sie "Abrufen", dann "IVCK" und bestätigen Sie mit ENTER, um nur die Ergebnisse der I-V Kenndatenmessung im Display darzustellen.
- 3. "DATUM" steht für das Aufzeichnungs-Datum und Uhrzeit der im Messgerät gespeicherten Daten, "TYP" steht für den Typ des durchgeführten Tests (LOW Ω , M Ω , IVCK)
- 4. Mit der Pfeiltaste ► haben Sie Zugriff auf das Feld 15/06/12 "Kommentare". MEM
- 5. Es werden die Kommentare angezeigt, die der Benutzer bei der Datenabspeicherung für die Anlage eingetragen hat (siehe § **7.2**).
- 6. Der Stern "*" an einer Messung bedeutet, dass das Messgerät die Messungen mit Aufzeichnung der Einstrahlungs- und Temperaturwerten unter Verwendung eines externen Datenloggers (z.B. Solar-02) durchgeführt hat, aber die Werte wurden noch nicht übertragen oder stehen nicht zur Verfügung. Für derartige Messungen können keine auf Normbedingungen umgerechneten STC Werte angezeigt werden.
- 7. Mit der Pfeiltaste ▶ wählen Sie das Feld zur Anzeige der Parameter (Anlage, String, Modul).
- 8. Am Display werden nun die vom Benutzer bei der Datenabspeicherung ausgewählten Kennungen bzw. Markierungen für PV-Anlage, PV-String und PV-Modul angegeben (siehe § 7.2).
- 9. Mit **ESC/MENU** gelangen Sie ins Hauptmenü zurück.

15/06/12	15:3	4:26		
MEM	IMP	STR	MOD	
001	001	001	001	
002	001	001	002	
Auswahl		MEM	IVCK	

7.3.2.1. Zugriff zu den abgespeicherten Daten – Numerische Anzeige

- 1. Wählen Sie eine Zeile aus, die einem abgespeicherten Ergebnis entspricht, und drücken Sie die **ENTER** Taste.
- 2. Wählen Sie "Ansicht" und drücken Sie **ENTER**, um zur Datenansicht in folgenden Formen zu gelangen:
 - Numerische Darstellungen der gemessener Parameter unter Standard- (STC) und Betriebsbedingungen (OPC) für den IVCK Test.
 - \triangleright Numerische Darstellungen der gemessenen Parameter bei Isolationsmessungen (MΩ) und Durchgangstest (LOWΩ).

า	15/05/12	15:34:26			
	MEM	Anl	STR	MOD	
r	001	001	001	001	
	002	001	001	002	
1					
d					
	Ansicht				
1	Lösche	n >			
b	Auswahl		MEM	IVCK	

- 3. Für den **IVCK** Test sind die Werte der folgenden Parameter vorhanden:
 - Modultyp / PV Modell
 - > Einstrahlungswert (nur mit optionaler Referenzzelle)
 - > Den Temperaturwert des Moduls (optional)
 - Die Mittelwerte von Voc und Isc unter OPC Bedingungen
 - Die gemessenen Werte von Voc und Isc unter OPC Bedingungen
 - ➤ Die gemessenen Werte von Voc und Isc auf STC berechnet und das Teilergebnis resultierend aus dem Vergleich mit den hinterlegten Nennwerten.

15/05/12 15:34:2	26
Modul:	SUNPWR210
Irr	002W/m2
Tc (AUTO)	903W/m2 57°C
VocMed@ÓPC	V
IscMed@OPC	A
Voc@OPC	647V
Isc@OPC	5.35A
Voc@STC	787 V OK
Isc@STC	5.72A OK
Ergeb	nis OK
Auswahl	IVCK

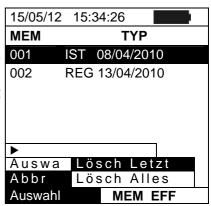
- 4. Für den $\mathbf{M}\Omega$ Test im FELD Modus sind die Werte der folgenden Parameter vorhanden:
 - ➤ Eingestellte Test-Nennspannung
 - Mindestgrenzwert, eingestellt auf Isolationsmessung
 - > Typ des ausgewählten Modus
 - Der tatsächliche Wert der verwendeten Testspannung
 - Der Isolationswert des Pluspols Ri (+)
 - Der Isolationswert des Minuspols Ri (-)

15/05/12	15:34:26	
Vtest Rlim Modus	: 100 : 1.0 : Fel	MΩ
Vtest	= 102	20 V
Ri (+)	= >20	0 M Ω
Ri (-)	= >20	0 M Ω
	Ergebnis: O	K
Auswahl		MΩ

- 5. Für den $\mathbf{M}\Omega$ Test im TIMER Modus sind die Werte der folgenden Parameter vorhanden:
 - ➤ Eingestellte Test-Nennspannung
 - Mindestgrenzwert, eingestellt auf Isolationsmessung
 - > Typ des ausgewählten Modus
 - Der tatsächliche Wert der verwendeten Testspannung
 - Der Isolationswert des Pluspols Ri (+)
 - > Die eingestellte Messzeit

15/05/12	15:34:2	26			
Vtest	:	100	0	V	
Rlim	:	1.0		$M \Omega$	
Modus	:	Tim	e r		
Vtest	=	102	0	V	
Ri (+)	=	> 20	0	$M\Omega$	
Messdauer	: 7s				
Ergebnis: OK					
Auswahl			ΜΩ		

- 6. Für den $\mathbf{M}\Omega$ Test im STRING Modus sind die Werte der folgenden Parameter vorhanden:
 - > Eingestellte Prüfspannung
 - > Mindestgrenzwert, eingestellt für Isolationsmessung
 - > Typ des ausgewählten Messmodus
 - > Der tatsächliche Wert der verwendeten Testspannung
 - ➤ Der gemessene Isolationswert des Pluspols Ri (+)


15/05/12	15:34:	26	
Vtest Rlim Modo	:	1000 1.0 Stringa	V M Ω
Vtest Ri (+)	=	1020	V M.O.
(, ,		7 200	
	Ergebr	nis: OK	
Auswahl		МΩ	

- 7. Für den $LOW\Omega$ Test sind die Werte der folgenden Parameter vorhanden:
 - Eingestellter Grenzwert für den Durchgangstest
 - Wert des Kalibrationswiderstandes der Messleitungen
 - Der Widerstandswert des zu messenden Gegenstands
 - Der tatsächliche Wert des Prüfstromes

15/05/12 1	5:34:	26	
RPE max Rcal	:	1.0	Ω
Rpe	=	0.99	Ω
Itest	=	212.	m A
Er	gebr	nis: OK	
Auswahl	•	LO	WΩ

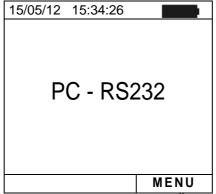
7.3.3. Gespeicherte Daten löschen

- Innerhalb der Liste der gespeicherten Ergebnisse drücken Sie ENTER, um ins Untermenü zu gelangen.
- Wählen Sie "Löschen", drücken Sie die Pfeiltaste ►. Das Gerät ermöglicht die Auswahl der folgenden Elemente:
 - ➤ Letzten Wert löschen → Löschung der zuletzt abgespeicherten Messung
 - ➤ Alle löschen → Löschung aller Daten im Speicher
- 3. Wählen Sie die gewünschte Option mit den Pfeiltasten (▲,▼) und bestätigen Sie mit ENTER.
- 4. Mit **ESC/MENU** gelangen Sie ins Hauptmenü zurück.

8. VERBINDUNG DES GERÄTES MIT DEM PC

WARNUNG

- Das Messgerät kann über das Schnittstellenkabel C2006 an einen PC angeschlossen werden.
- Bevor die Datenübertragung stattfinden kann, müssen am PC jedoch das Programm Topview und die Treiber für das C2006 Kabel installiert werden.


- Außerdem müssen am PC die zu benutzende USB Schnittstelle und die richtige Baudrate (Datenübertragungsgeschwindigkeit) mit 57600 Bits/s eingestellt werden. Starten Sie hierzu das TopView Programm und befolgen Sie einfach die Online Hilfe dieser Software.
- Die zu benutzende Schnittstelle darf nicht schon durch anderes Zubehör oder Anwendungen, wie beispielsweise Maus oder Modem belegt sein. Schließen Sie alle laufenden Prozesse im Windows Task-Manager.
- Optische Schnittstellen emittieren Infrarot LED Strahlen. Blicken Sie nicht in den IR Strahl. Nach IEC/EN60825-1 gelten für diese Strahlen die Klasse 1M LED Sicherheitsvorschriften.

Zur Übertragung der gespeicherten Messdaten auf einen PC, gehen Sie wie folgt vor:

- 1. Schalten Sie das Messgerät mit der ON/OFF Taste ein.
- 2. Schließen Sie den PC über das mitgelieferte optische/USB Kabel C2006 an.
- 3. Drücken Sie ESC/MENU, um ins Hauptmenü zu gelangen.
- 4. Mit den Pfeiltasten (▲,▼) wählen Sie "PC RS232" und bestätigen Sie mit ENTER.

5. Hiermit erscheint die folgende Anzeige:

 Verwenden Sie die TopView Software zum Übertragen der Messdaten vom Messgerätespeicher auf den PC (Einzelheiten hierzu erfahren Sie in der Online-Hilfe dieser Software).

9. WARTUNG UND PFLEGE

9.1. ALLGEMEINE INFORMATIONEN

Das Gerät, das Sie gekauft haben, ist ein Präzisionsinstrument. Überschreiten Sie niemals die technischen Grenzwerte in dieser Bedienungsanleitung bei der Messung oder bei der Lagerung, um mögliche Beschädigungen oder Gefahren zu vermeiden.

Benutzen Sie das Gerät nicht in Umgebungen mit hohem Luftfeuchtigkeitspegel oder hohen Temperaturen. Setzen Sie es nicht direktem Sonnenlicht aus.

Schalten Sie das Gerät nach Gebrauch wieder aus. Falls das Gerät für eine längere Zeit nicht benutzt werden wird, entfernen Sie die Batterien, um Flüssigkeitslecks zu vermeiden, die die innere Schaltkreise des Gerätes beschädigen könnten.

9.2. BATTERIEWECHSEL

Die Gerätebatterien müssen gegen frische Batterien ausgetauscht werden, sobald das Symbol "——" auf dem Display erscheint oder wenn während einer Messung "low battery" angezeigt wird.

WARNUNG

Nur Fachleute oder ausgebildete Techniker sollten dieses Verfahren durchführen. Entfernen Sie alle Kabel aus den Eingans-Anschlüssen, bevor Sie diese Tätigkeit durchführen.

- 1. Drücken und halten Sie die ON/OFF Taste, um das Gerät auszuschalten.
- 2. Ziehen Sie die Anschlusskabel aus den Eingangsbuchsen.
- 3. Drehen Sie die Befestigungsschraube aus dem Batteriefachdeckel, legen Sie die Schraube beiseite und entfernen Sie den Deckel.
- 4. Entnehmen Sie alle Batterien aus dem Batteriefach, ersetzen Sie diese durch frische Batterien gleicher Größe (siehe § 10.5) und beachten Sie bitte die richtige Polung.
- 5. Setzen Sie den Batteriefachdeckel wieder auf und befestigen Sie ihn mit der beiseitegelegten Schraube.
- 6. Entsorgen Sie die gebrauchten Batterien umweltgerecht. Verwenden Sie dabei die geeigneten Behälter zur Entsorgung.

9.3. REINIGUNG

Zum Reinigen des Gerätes kann ein weiches trockenes Tuch verwendet werden. Benutzen Sie keine feuchten Tücher, Lösungsmittel oder Wasser, usw.

9.4. LEBENSENDE

WARNUNG: Das Symbol auf dem Gerät zeigt, dass die Gerätschaft und seine Zubehörteile und die internen Batterien getrennt gesammelt und korrekt entsorgt werden müssen.

10. TECHNISCHE DATEN

10.1. TECHNISCHE DATEN DER LEISTUNG EINER PV-INSTALLATION

Die Messgenauigkeit ist angegeben als [%Abl. + (Ziff.) * Auflösung] bei 23°C \pm 5°C, <80%HR

DC Spannung

Bereich [V]	Auflösung [V]	Genauigkeit	
15.0 ÷ 999.9	0.1	±(0.5%Ablsg. + 2Ziff.)	

Gleichstrom (mit externer Strommesszange)

Bereich [mV]	Auflösung [mV]	Genauigkeit
-1100 ÷ -5	0.1	1/0 F0/ Ablac 1 0 6m)/)
5 ÷ 1100	0.1	±(0.5%Ablsg. + 0.6mV)

Stromstärkenwerte werden IMMER mit positivem Vorzeichen angezeigt. Eingangsspannungen < 5mV Spannung werden ignoriert.

DC Leistung (Vmess > 150V)

FS Strommesszange [A]	Bereich [W]	Auflösung [W]	Genauigkeit
1< FS ≤ 10	0.000k ÷ 9.999k 10.00k ÷ 99.99k	0.001k 0.01k	±(0.7%Ablsg. + 3 Ziff.) (Imess < 10%FS)
10< FS ≤ 100	0.000k ÷ 9.999k 10.00k ÷ 99.99k	0.001k 0.01k	±(0.7%Ablsg.)
100< FS ≤ 1000	0.00k ÷ 99.99k 100.0k ÷ 999.9k	0.01k 0.1k	(Imess ≥ 10%FS)

Vmess = Spannung bei der gemessenen Leistung; Imess = Strom, der bei der Leistung gemessen wurde

Einstrahlung (mit Referenzzelle – k = Ausgangssignal der Zelle)

Bereich [mV]	Auflösung [mV]	Genauigkeit
0 ÷ 16.0 (k < 10)	0.01	1/1 00/ Ablag 1 0 1m\/)
$0 \div 50.0 \ (k \ge 10)$	0.02	±(1.0%Ablsg. + 0.1mV)

Temperatur (mit Fühler des Typs PT1000)

1011101010101101101101101101	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Bereich [°C]	Auflösung [°C]	Genauigkeit
-20.0 ÷ 100.0	0.1	±(1.0%Ablsa. + 1°C)

10.2. TECHNISCHE DATEN DER FUNKTION IVCK

DC Spannung unter OPC-Bedingungen

Bereich [V]	Auflösung [V]	Genauigkeit (*)
5.0 ÷ 199.9	0.1	1/1 00/ Ablog 1 27:ff)
200 ÷ 999	1	±(1.0%Ablsg. + 2Ziff.)

^(*) Die Messungen beginnen bei VDC > 15V; die Genauigkeitsangaben gelten bei VDC > 20V.

DC Strom unter OPC-Bedingungen

Bereich [A]	Auflösung [A]	Genauigkeit
0.10 ÷ 10.00	0.01	±(1.0%Ablsg. + 2Ziff.)

DC Spannung unter STC-Bedingungen

Bereich [V]	Auflösung [V]	Genauigkeit (*)
5.0 ÷ 199.9	0.1	1/4 00/ Ablog 1 27:ff)
200 ÷ 999	1	\pm (4.0%Ablsg. + 2Ziff.)

^(*) Die Messungen beginnen bei VDC > 15V; die Genauigkeitsangaben gelten bei VDC > 20V.

DC Strom unter STC-Bedingungen

Bereich [A]	Auflösung [A]	Genauigkeit
0.10 ÷ 10.00	0.01	±(4.0%Ablsg. + 2Ziff.)

Einstrahlung (mit Referenzzelle – k = Ausgangssignal der Zelle)

Bereich [mV]	Auflösung [mV]	Genauigkeit
0 ÷ 16.0 (k < 10)	0.01	±(1.0%Ablsg. + 0.1mV)
$0 \div 50.0 \ (k \ge 10)$	0.02	±(1.0%Ablsg. + 0.1mV)

Temperatur (mit Fühler des Typs PT1000)

Bereich [°C]	Auflösung [°C]	Genauigkeit
-20.0 ÷ 100.0	0.1	±(1.0%Ablsg. + 1°C)

10.3. TECHNISCHE DATEN DER ELEKTRISCHEN SICHERHEIT

Durchgang der Schutzleiter (LOW Ω)

Bereich [Ω]	Auflösung [Ω]	Genauigkeit
0.00 ÷ 1.99	0.01	
2.0 ÷ 19.9	0.1	±(2.0%Ablsg. + 2Ziff.)
20 ÷ 199	1	

Teststrom >200mA DC bis 2Ω (Kabel eingeschlossen), Auflösung 1mA, Genauigkeit \pm (5.0%Ablesung + 5Ziffern) Leerlaufspannung $4 < V_0 < 24V$

Isolationswiderstand (M Ω)

Testspannung [V]	Bereich [MΩ]	Auflösung [MΩ]	Genauigkeit
250	0.01 ÷ 1.99	0.01	
	2.0 ÷ 19.9	0.1	
	20 ÷ 99	1	
	0.01 ÷ 1.99	0.01	
500	2.0 ÷ 19.9	0.1	\pm (5.0%Ablsg. + 5Ziff.)
	20 ÷ 199	1	
	0.01 ÷ 1.99	0.01	
1000	2.0 ÷ 19.9	0.1	
	20 ÷ 199	1	

Generierte Spannung, Auflösung 1V, Genauigkeit \pm (5.0%Ablesung + 5Ziffern) @ Rmess> 0.5% FS Nennmessstrom > 1mA bei $\,$ 1k Ω und bei Vnom

10.4. SICHERHEITSVORSCHRIFTEN

10.4.1. Allgemein

Sicherheit des Gerätes: IEC/EN61010-1 Sicherheitsstandard von Messzubehör: IEC/EN61010-031

Messungen: Richtlinie CEI 82-25 (nur Italien) (PV-Wirkungsgrad)

IEC/EN62446 und VDE 0126-23 (IVCK)

VDE 0126-23, CEI 64-8, IEC/EN61557-1-2-4 (LOWΩ, MΩ)

Isolation: Doppelte Isolation

Verschmutzungsgrad: 2

Messkategorie: CAT I 1000V DC, CAT III 300V zu Erde

Max 1000V zwischen den Eingängen P, N, E, C

10.5. ALLGEMEINE EIGENSCHAFTEN

Display und Datenspeicher

Typ des Displays: LCD, 128x128 pxl, mit Hintergrundbeleuchtung

Kapazität des Speichers: 256 kBytes Speicherdaten: max 999 PC Schnittstelle: optisch / USB

Eigenschaften des Funkmoduls

Frequenzbereich: 2.400 ÷ 2.4835GHz

R&TTE Kategorie: Klasse 1
Maximale Sendeleistung: 30μW
Maximaler Verbindungsabstand via RF: 1m

APPARECCHIO LED DI CLASSE 1M RADIAZIONE LED INVISIBILE 850nm o 890nm, max 1mW IEC /EN 60825-1: 1994 + A1:2002 + A2:2001

Wirkungsgrad der PV-Anlagen

Integrationszeit: 5, 10, 30, 60, 120, 300, 600, 900, 1800, 3600s

Speicher des SOLAR-02: ca. 1,5 Stunden (bei Intervall = 5s) ca. 8 Tage (bei Intervall = 600s)

Stromversorgung

Batterietyp: 6 x1,5 V alkalisch Typ AA LR06 MN1500

Batteriewarnanzeige: Das Symbol "_____" erscheint auf dem Display

Batterielebensdauer: ca. 120 Stunden (PV Effizienz)
Automatische Ausschaltung: Nach 5 Minuten Nichtgebrauch

Mechanische Eigenschaften

Abmessungen (L x B x H): 235 x 165 x 75mm

Gewicht (inklusive Batterie): 1,2kg

10.6. KLIMABEDINGUNGEN FÜR DEN GEBRAUCH

WARNUNG

(*) Vorschriften für die Verwendung des Geräts bei Betriebshöhen zwischen 2000 und 5000 m.

An den Eingängen P, N, E, C gilt das Gerät zur Überspannungskategorie CAT II 300V zur Erde max. 1000V zwischen den Eingängen klassiert. Markierungen und Symbole, die auf dem Gerät gezeigt werden, sind nur dann als gültig zu betrachten, wenn das Gerät bei einer Höhe <2000m benutzt wird.

Dieses Gerät ist konform im Sinne der Niederspannungsrichtlinie 2006/95/EWG, (LVD) und der EMV Richtlinie 2004/108/EWG.

10.7. ZUBEHÖR

- KITGSC4: Set aus 4 farbigen Sicherheitsmessleitungen 4mm Buchse, je 2m lang + 4 farbige Krokodilklemmen
- KITPV3: Set aus 2 Adaptern mit MC3 Verbindungsstecker und Kupplung
- KITPV4: Set aus 2 Adaptern mit MC4 Verbindungsstecker und Kupplung
- DC Stromwandler HT4004 10A/100A DC
- TOPVIEW: Windows Protokoll Software + optisches /USB Kabel C2006
- BORSA2051: Schutz- und Aufbewahrungstasche für Gerät und Zubehör
- ISO9000 Kalibrationsprotokoll
- 6 Batterien 1,5V Typ AA
- Benutzer-Handbuch

10.8. OPTIONALES ZUBEHÖR

• **SOLAR02**: externer Datenlogger zur **drahtlosen** Übertragung der gespeicherten

Messdaten aus der Einstrahlungs- & Temperaturmessung

HT304N
 M304
 PT300N
 VA300
 Duo- Referenz-Zelle für die Einstrahlungsmessung in W/m²
 Inklinometer (zur Überprüfung des Einstrahlungswinkel)
 Sonde für die Temperaturmessung der Solarmodule
 robuster Geräteschutzkoffer Ausführung deluxe

• Sortimo Boxx Systemkoffer

• KIT EXT10 4 Leiter Anschlussverlängerung 10m

HT96U Stromwandler 1000A DC

11. ANHANG – THEORETISCHE INFORMATIONEN

11.1. WIRKUNGSGRADSTEST DER PV-ANLAGEN

Korr.	Wert von Tcel	Mathematisches Verhältnis zur Berechnung von nDC	Richtlinie	Ergebni s
Tmod	Tcel = Wert der gemessenen Modultemp.	$ _{\mathbf{Pf}_{V2}} = \int_{\mathcal{U}} 1 \qquad \text{(se Tcel} \le 40^{\circ}\text{C)}$		
Tenv	Tcel = Wert der berechneten Modultemp. $Tcel = Tamb + (NOCT - 20) \times \frac{G_p}{800}$	$Rfv2 = \begin{cases} 1 & \text{(se Tcel} \le 40^{\circ}\text{C)} \\ 1 - (\text{Tcel} - 40) \times \frac{ \gamma }{100} & \text{(se Tcel} > 40^{\circ}\text{C)} \end{cases}$ $wobei$ $nDC = \frac{P_{dc}}{\left[Rfv2 \times \frac{G_p}{G_{STC}} \times P_n\right]}$	Richtlinie CEI 82-25	OK/NEIN
nDC	Tcel = Wert der gemessenen Modultemp.	$nDC = \frac{G_{STC}}{G_p} \times \left[1 + \frac{ \gamma }{100} \times \left(T_{cel} - 25\right)\right] \times \frac{P_{dc}}{P_n}$		

wobei:

Symbol	Beschreibung	Messeinh eit
G_p	Einstrahlung auf PV Modulberfläche	$\left[W/m^2\right]$
$G_{ extit{STC}}$	Einstrahlung unter Standardbedingungen = 1000	$\left[W/m^{2}\right]$
P_n	Nennleistung = Summe aller Pmax der PV Module, die bei der Messung mit einbezogen werden	[kW]
P_{dc}	DC Leistung, gemessen am Ausgang der PV-Anlage	[kW]
Rfv2	Korrekturfaktor der Temperatur der PV-Zellen (Tcel), gemessen oder berechnet nach dem ausgewählten Typ des Korrekturverhältnis	
	Absolutwert des Temperaturkoeffizienten von Pmax der PV-Module, die bei der Messung mit einbezogen werden	[%/°C]
NOCT	(Normal Operating Cell Temperature) = Betriebsnenntemperatur der PV Zellen (800W/m², 20°C, AM=1.5, Luftgeschwindigkeit =1m/s).	[%/°C]

Die oben genannten Angaben sind bei folgenden Bedingungen gültig: Einstrahlung > Min Einstrahlung (siehe Bedienungsanleitung des Gerätes) und "stabiler Einstrahlung", d.h. bei jedem Test, mit IP ≤ 1min, muss der Unterschied zwischen dem gemessenen maximalen und minimalen Einstrahlungswert <20W/m² sein.

Im Allgemeinen kann das Ergebnis wie folgt sein:

- ➤ Analyse nicht möglich: wenn die Einstrahlung keinen stabilen Wert erreichen kann, oder geringer als der eingestellte Mindestgrenzwert ist, oder der Wirkungsgrad keinen gültigen Wert während der gesamten Aufzeichnung erreicht (also nDC > 1.15).
- ➤ ERGEBNIS JA (bei Auswahl Korr. "Tmod" oder "Tenv", nur ITALIEN): wenn mindestens 1 Wert unter den gemessenen Werten existiert, der die geltenden Rechtsvorschriften erfüllt.
- ➤ ERGEBNIS NEIN (Korr. "Tmod" oder "Tenv"): wenn KEIN Wert unter den gemessenen Werten existiert, der den Bestimmungen der geltenden Rechtsvorschriften entsprechen
- ➤ Das Gerät wird **keine Ergebnisbewertung mit JA oder NEIN anzeigen** wenn die Auswahl "**nDC**" Temperaturkorrektur eingestellt worden ist.

Angezeigtes Ergebnis JA (Korr. "Tmod" oder "Tenv"):

Das Gerät liefert ein positives Gesamtergebnis gemäß der italienischen Richtlinie CEI 82-25 wenn, unter den während der Prüfung gemessenen Werten, mindestens ein **gültiger** Wert existiert, für den der berechnete Wert des **nDC** Wirkungsgrads (gemäß früheren Verhältnissen) höher ist, als der Grenzwert, der vom Benutzer eingestellt wurde (siehe § 5.2.2).

Wenn mehrere Werte existieren, die allen oben genannte Bedingungen erfüllen, zeigt das Gerät automatisch den Wert, der dem maximalen nDC Wert entspricht.

Ergebnis ohne Bewertung JA / Nein: (Korrektur "nDC")

Das Gerät liefert als Ergebnis die Werte, die dem Punkt mit dem maximalen nDC entsprechen, ermittelt aus:

$$nDC = \frac{G_{STC}}{G_p} \times \left[1 + \frac{|\gamma|}{100} \times \left(T_{cel} - 25\right)\right] \times \frac{P_{dc}}{P_n}$$

(für die Bedeutung der Definitionen und der Symbole siehe vorigen Abschnitt)

12. SERVICE

12.1. GARANTIEBEDINGUNGEN

Für dieses Gerät gewähren wir Garantie auf Material- oder Produktionsfehler, entsprechend unseren allgemeinen Geschäftsbedingungen. Während der Garantiefrist behält sich der Hersteller das Recht vor, das Produkt wahlweise zu reparieren oder zu ersetzen.

Falls Sie das Gerät aus irgendeinem Grund für Reparatur oder Austausch einschicken müssen, setzen Sie sich bitte zuerst mit dem lokalen Händler in Verbindung, bei dem Sie das Gerät gekauft haben. Transportkosten werden vom Kunden getragen. Vergessen Sie nicht, einen Bericht über die Gründe für das Einschicken beizulegen (erkannte Mängel). Verwenden Sie nur die Originalverpackung. Alle Schäden beim Versand, die auf Nichtverwendung der Originalverpackung zurückzuführen sind, hat auf jeden Fall der Kunde zu tragen. Der Hersteller übernimmt keine Haftung für Personen- oder Sachschäden.

Von der Garantie ausgenommen sind:

- Reparatur und/oder Ersatz von Zubehör und Batterie (nicht durch die Garantie gedeckt)
- Reparaturen, die aufgrund unsachgemäßer Verwendung oder durch unsachgemäße Kombination mit inkompatiblen Zubehörteilen oder Geräten erforderlich werden.
- Reparaturen, die aufgrund von Beschädigungen durch ungeeignete Transportverpackung erforderlich werden.
- Reparaturen, die aufgrund von vorhergegangenen Reparaturversuchen durch ungeschulte oder nicht autorisierte Personen erforderlich werden.
- Geräte, die modifiziert wurden, ohne dass das ausdrückliche Einverständnis des Herstellers dafür vorlag.
- Gebrauch, der den Eigenschaften des Gerätes und den Bedienungsanleitungen nicht entspricht.

Der Inhalt dieser Bedienungsanleitung darf ohne das Einverständnis des Herstellers in keiner Form reproduziert werden

Unsere Produkte sind patentiert und unsere Warenzeichen eingetragen. Wir behalten uns das Recht vor, Spezifikationen und Preise aufgrund eventuell notwendiger technischer Verbesserungen oder Entwicklungen zu ändern.

12.2. SERVICE

Für den Fall, dass das Gerät nicht korrekt funktioniert, stellen Sie vor der Kontaktaufnahme mit Ihrem Händler sicher, dass die Batterie und die Kabel korrekt eingesetzt sind und funktionieren, und sie ersetzen, wenn nötig. Stellen Sie sicher, dass Ihre Betriebsabläufe der in dieser Betriebsanleitung beschriebenen Vorgehensweise entsprechen.

Falls Sie das Gerät aus irgendeinem Grund für Reparatur oder Austausch einschicken müssen, setzen Sie sich bitte zuerst mit dem lokalen Händler in Verbindung, bei dem Sie das Gerät gekauft haben. Transportkosten werden vom Kunden getragen. Vergessen Sie nicht, einen Bericht über die Gründe für das Einschicken beizulegen (erkannte Mängel). Verwenden Sie nur die Originalverpackung. Alle Schäden beim Versand, die auf Nichtverwendung der Originalverpackung zurückzuführen sind, hat auf jeden Fall der Kunde zu tragen.

Am Waldfriedhof 1b 41352 Korschenbroich Tel: +49-02161 564 581 Fax: +49-02161 564 583 email: info@ht-instruments.de http://www.ht-instruments.de